Application

Slipring induction motors are used for systems specifying limitations on starting current, for high inertia drives and for frequent starting. The motors are eminently suitable for high mechanical and electrical stresses encountered under heavy duty conditions such as excavating machines, stone crushers, main and auxiliary drives in rolling mills etc. These motors are well suited for smooth starting by using the resistance bank. These motors can also be used for variable speed drives, particularly for short periods and within a small speed range.

Insulation

The motors are provided with class F insulation scheme with temperature rise for stator windings limited to class B limits and rotor winding limited to class F limits.

Enclosures: (Material \& T-Box Location)

Frame Size	Enclosure Materials	Terminals Box Location	
		Standards	Options Available
100 to 160	Cast Iron	Top	----

Degree of Protection

All motors have IP55 degree of protection as per IS/IEC 60034-5. Higher degree of protection such as IP 56, IP 65 and IP 66 can be offered on request. All flange mounted motors are additionally provided with oil tight shaft protection on driving end side.
Note: For more details, refer to annexure II on page no. 121.

Mounting

Standard mounting is B3. In case B5 mounting is required, please refer to our sales office.

Additional Mechanical Features

The Slipring's at the drive end are accessible through hinged brushes on the top after opening the T-Box cover. The brush block assembly can hence easily be replaced as a whole unit without dismantling the motor. Terminals box of the motor contains 3 terminals for stator and 3 for rotor and 2 cable entries.

Starting and Speed Control

The maximum torque (which is approx. the pull-out torque) can be obtained for starting by correct selection of the resistance of the controller. By appropriately switching the resistance as the motor picks up speed, the mean torque during starting can be as high as 2.25 times the rated full load torque.

The values of rated current and voltage required for selecting the starting resistors are listed in the performance table of Slipring motors.
For reduced load, the rotor current reduces and is given by rated current \times (reduced load/rated load) The rotor current while starting is proportional to the motor torque and determines the size of the starting resistance.
Fine speed variation is possible by inserting resistance in the rotor circuit calculated per phase as:

$$
R_{c}=\frac{V_{r} \times\left(N_{s}-----------------M_{r}\right)}{3 \times I_{r} \times N_{s} \times M}
$$

Where $\mathrm{V}_{r}, \mathrm{I}_{\mathrm{r}}$ and R_{r} are the open circuit voltage, rated current and resistance of the rotor, M_{n} and M are the rated and required torque values, and N_{s} and N are the synchronous and required speed respectively.
Since the cooling is reduced at lower speed, torque and output must be reduced as per the following table, otherwise a larger motor should be selected.

Speed \%	100	90	80	70	60	50
Torque \%	100	96	91	85	80	72
Output \%	100	86	73	60	48	36

At lower speeds the torque speed characteristic is such that the speed varies inversely with the load. Below 50\% rated speed, satisfactory operating characteristics may not be obtained even if the load torque remains constant.
If sufficiently ventilated by using a separate fan etc. the motor can provide the full load torque at reduced speed.

Performance table for 6-Pole motors
TEFC 3 Phase Slipring Induction Motors Crane \& Hoist Duty Fr. 100L To 160L Ins. Class Stator/Rotor : F/F
Temp. Rise Stator/Rotor $:$ B/F $\stackrel{n}{n}$ Temp. Rise Stator/Rotor
Protection
1000 rpm (6-Pole)
$\begin{array}{lll}\text { Ambient } & : 45^{\circ} \mathrm{C} \\ \text { Duty } & : & \mathrm{S} 3 / \mathrm{S} 4 / \mathrm{S} 5\end{array}$

$$
-1
$$

Dimensional Details：Slip Ring Motor Type MP Foot Mounted（B3）TEFC Frame 100L－160 M／L

용	$\stackrel{\circ}{\Sigma}$	$\frac{0}{\Sigma}$	\sum_{Σ}^{N}	$\stackrel{0}{\Sigma}$
－＝	\＆	员	\bigcirc	$\stackrel{8}{8}$
$=\underbrace{*}{ }^{*} 0_{0}$	\bar{m}	¢	〒	¢
	∞	∞	운	$\stackrel{\sim}{\sim}$
ш	8	8	∞	$\stackrel{\text { 앋 }}{ }$
$\begin{gathered} \text { *区 } \\ 0 \\ \hline \end{gathered}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	¢	\％
	㐌	㐌	¢	\equiv
\％	$\bar{\square}$	¢	ォ	∞
б	$\stackrel{\text { ® }}{\sim}$	$\stackrel{0}{\Gamma}$	¢	－
$>$	$\stackrel{\circ}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{\circ}{\circ}$	$\frac{10}{m}$
${ }^{*} \geq$	\％	\％	\％	8
¢	$\stackrel{\circ}{\circ}$	출	\％	$\stackrel{\circ}{5}$
¢	$\stackrel{\text { N }}{ }$	웃	$\stackrel{\sim}{\sim}$	$\stackrel{\text { ® }}{\sim}$
\bigcirc	－	능	$\stackrel{\sim}{\sim}$	®
\rightarrow	¢	へ⿵冂人	$\stackrel{N}{6}$	¢
ㅁ	N	$\stackrel{\sim}{\sim}$	$\stackrel{\text { ले }}{ }$	$\stackrel{\circ}{\circ}$
오	$\stackrel{\text { ® }}{\sim}$	N	N	$\stackrel{\infty}{5}$
S	$\stackrel{\text { J }}{ }$	$\stackrel{\text { ® }}{\sim}$	$\stackrel{ }{\sim}$	$\stackrel{\sim}{2}$
O	$\stackrel{\infty}{\sim}$	$\stackrel{\infty}{\sim}$	－	$\stackrel{\sim}{\sim}$
¢	1	1		$\stackrel{\stackrel{1}{2}}{\square}$
¢	8	is	志	\bigcirc
を	し	๕	む	8
¢	$\stackrel{\circ}{\stackrel{\circ}{-}}$	$\stackrel{\circ}{\stackrel{\circ}{+}}$	$\stackrel{\infty}{\sim}$	$\stackrel{\text { ¢ }}{\text { ¢ }}$
¢	－	\％	$\stackrel{\circ}{\circ}$	$\stackrel{\square}{\text { ¢ }}$
${ }^{*} \times$	$\stackrel{ }{\sim}$	$\stackrel{ }{\sim}$	$\stackrel{ }{\sim}$	$\stackrel{\square}{\square}$
＊${ }^{\text {I }}$		$\stackrel{\sim}{\sim}$	ल	$\stackrel{\square}{\circ}$
0	\％	\bigcirc	\％	$\stackrel{\circ}{\circ}$
${ }^{*}{ }^{*}$	1	1	$\stackrel{\infty}{\sim}$	帯
＊${ }_{\text {m }}$	¢	¢	\％	$\stackrel{\circ}{2}$
＊${ }^{\text {c }}$	$\stackrel{\square}{\circ}$	$\stackrel{\text { ¢ }}{\sim}$	$\stackrel{\circ}{\sim}$	
응	$\begin{aligned} & \circ \\ & \dot{\sigma} \end{aligned}$	$\begin{aligned} & 0 \\ & \dot{\sigma} \end{aligned}$	$\stackrel{\circ}{\dot{\sigma}}$	$\stackrel{-}{-}$
$\stackrel{\stackrel{\sim}{\stackrel{N}{N}}}{\underset{\sim}{x}}$	¢	$\underset{\underset{\Gamma}{N}}{ }$	$\underset{\substack{\underset{\sim}{\sim}}}{\substack{n}}$	

[^0]Key／key way fit ：h9／N9
－Double shaft extension can be provided with shaft dimension
－Also suitable for B6，B7，B8，V5 \＆V6 mounting as per IS 2253
＊＊Minimum distance for efficient cooling of motor to be maintained by user
herwise specified．
CAT－P－1016－3－1

[^0]: TABLE A
 Specification

 IS：2540

 | Dimension | Tolerance | Specification |
 | :---: | :---: | :---: |
 | A, B | ± 0.75 | |
 | H | -0.5 | IS ： 1231 |
 | K | +0.430 | |

 | $*$＊Refer TABLE A |
 | :---: |
 | for tolerances |

