

IE2 Motor Series

Introduction

Global warming is a reality and world over people are working towards reduction in carbon foot print.

Electric motor applications, in Indian industry, consume about seventy percent of the generated electrical energy. Improving efficiency of the motor is therefore a major concern in energy-efficiency efforts.

Electric motors with improved efficiency, in combination with frequency converters can save about 7% of the total worldwide electrical energy. Roughly one quarter to one third of these savings come from the improved efficiency of the motor.

A need was felt amongst users, consultants and manufacturers in India to revise existing BIS standard IS 12615:2004 to harmonize with the international standards. This will lead us to be in line with international code of standards and practices. This will also result in having uniform test procedures to facilitate the end user to compare the performance and energy efficiency of motors.

Motors from 0.37kW to 375kW make up the vast majority (approximately 90%) of installed motor population and are covered by the standard IS 12615:2011. This fulfills the need of the manufacturers to design motor for a global market. This standard defines four efficiency classes for nominal frequency 50Hz.

Salient features of BIS standard IS 12615:2011 (second revision)

This standard is primarily based on IEC 60034-30:2008 issued by the International Electrotechnical Commission except that additional performance parameters other than efficiency values have also been included.

The efficiency levels in IS 12615:2011 are based on test methods specified in IS 15999 (Part 2/sec 1):2011 / IEC 60034-2-1:2007. The standard specifies methods used to determine losses and efficiency, with the objective to calculate efficiency values more accurately.

New IE efficiency classes are as given below

Efficiency Class	Description	
IE1	Standard efficiency	Comparable to eff2
IE2	High efficiency	Comparable to eff1
IE3	Premium	Premium
IE4	Super premium	Super premium

As per the standard, efficiency class of IE4 is under consideration and would be incorporated later. The standard IS 12615:2011 covers low voltage, AC three phase squirrel cage, single speed induction motors for

• Rated voltage <= 1000V

- Rated frequency 50Hz
- Rated output between 0.37kW to 375kW
- 2P, 4P & 6P
- Rated on the basis of continuous duty (S1) or intermittent periodic duty (S3) with 80% or higher cyclic duration factor
- Capable of operating direct on line
- Rated for ambient temperature of 40 deg centigrade & altitude not exceeding 1000m
- Degree of protection IP44 or superior
- Method of cooling IC 411
- Fixing dimensions as per IS 1231 & IS 2223
- Determination of total losses with PLL determination from residual losses

This standard does not cover

- 8P motors
- Pole changing motors (multispeed motors)
- Motors made exclusively for converter duty application
- Motors completely integrated into the machine. (for example, pumps, compressors that cannot be tested separately from the machine)
- Crane & hoist duty motors

Highlights

- Efficiency values of different manufacturers are comparable only if they are measured by the same method as per IS 15999 (Part 2/sec 1):2011/IEC 60034-2-1:2007.
- IE Class efficiencies are subject to tolerance as per IEC 60034-1
- For conditions of limitations on grid supply (e.g. limiting starting current, high tolerances of voltage and/or frequency), it may not be possible to achieve the same IE efficiency class.

- Energy efficient cage-induction motors are typically built with more active material to achieve higher efficiency and hence the starting performance of these motors differ somewhat from motors with a lower efficiency. The locked rotor current increases approximately by 10 to 15 percent for increase in each level of efficiency for the same output power. For replacing existing motors, this should be checked by the user with manufacturer for proper sizing of the protective devices.
- Old efficiency levels were Eff2 and Eff1 (as per CEMEP). For calculation of these efficiencies, fixed stray load losses (0.5% of motor output) were assumed. Now IS 12615:2011 refers to IS 15999 (Part 2/sec 1):2011 / IEC 60034-2-1:2007 for calculation of efficiency. This calculation is based on the new methods of stray load loss measurement specified in the standard. The effect is in the reduction of efficiency as compared to the earlier values.

Energy Efficient Induction Motors

(Three phase squirrel cage induction motors)

Bharat Bijlee has introduced a complete range of IE2 High efficiency motors

Product Range

Туре	Frame Size	kW range
2H - IE2 High efficiency	71 TO 355L	0.37 TO 355*

Standards

All motors comply with following Indian & International standards

National/International Standards

IS : 325	Three Phase Induction motors specifications.			
IS/IEC 60034-1	Rotating electric machines: Part 1 Rating and Performance			
IS:900	Code of practice for installation & maintenance of induction motors.			
S:1231	Dimensions of foot mounted A.C Induction motors			
IS : 2223	Dimensions of Flange mounted A.C Induction motors			
IS 15999 part 2 section 1 /IEC 60034-2-1	Rotating Electrical Machines - Standard Methods for determining losses and efficiency from tests			
IS /IEC 60034-5	Degree of protection provided by the integral design of Rotating Electrical Machines (IP code) : classification			
IS : 6362 / IEC 60034-6	Designation of methods of cooling for Rotating Electrical Machines			
IS:12065/ IEC60034-14	Permissible Limits of noise level for Rotating Electrical Machines			
IS:12075	Mechanical Vibration of Rotating Electrical Machines			
IS:12615:2011	Energy Efficient Induction Motors Three phase Squirrel Cage.			
IEC 60072	Dimension & Output rating of Rotating Electrical machines.			

*Note : Motors above 355kW & up to 1250kW are available in frame size 355, 400 & 450 with double ventilated cooling system. Please contact our Sales.

CE MARK

All motors have CE mark on the nameplate

ELECTRICAL FEATURES

Supply Conditions (Voltage & Frequency)						
Voltage	:	415 V ± 10%				
Frequncy	:	50Hz ± 5%				
Combined variation	:	± 10%				

Ambient

Motors are designed for ambient temperature of 50° C

Altitude

Motors are designed for an altitude up to 1000m above mean sea level.

Re-rating factors

The re-rating applicable under different conditions of supply voltage, frequency, ambient & altitude are obtained by multiplying following factors.

Variation in supply Voltage & Frequency

Voltage Variation %	Frequency Variation %	Combined Voltage & Frequency Variation %	Permissible output as % of rated value
± 10	± 5	± 10	100
± 12.5	± 5	± 12.5	95
± 15	± 5	± 15	90

Amb. Temp. °C	Permissible output as % of rated value		Altitude above sea level m	Permissible output as % of rated value
<30	107		1000	100
00.45	100		1500	97
30-45	103		2000	94
50	100		2500	90
55	96		3000	86
	30		3500	82
60	92		4000	77

Method of starting

Our motors are suitable for following method of starting

kW rating	Method of starting	No. of leads
Upto & including 1.5 kW	DOL	6
	415V - Star	
	240V - Delta	
Above 1.5 kW	DOL or Star / Delta	6

All Bharat Bijlee motors are suitable for inverter duty application. (Refer page 5)

Starting Time and Duty Cycle

Motors are designed for continuous (S1) Duty. Other type of duty (S2 to S9) can be offered on request. The motors can safely withstand 3 consecutive starts from cold condition & 2 consecutive starts from hot conditions. In applications where more severe starting conditions are encountered, a special enquiry should be made e.g.

- Drives with high inertia e.g flywheel drives, eccentric presses, large fans etc.
- Drives involving intermittent duty of motors with frequent starts e.g. rolling mills, centrifuges and conveyor motors, etc.

The enquiry should be accompanied with following information.

- GD² and relevant speed of driven equipment
- Duty cycle/sequence of operation/no. starts/hours
- Speed-Torque diagram of driven equipment
- Method of braking (Electrical or Mechanical)

Insulation and Endurance

The Motors are provided with class F insulation scheme with temperature rise limited to class B. These motors can be used either at ambient temperature of 55° C or overloaded continuously by 10% (service factor = 1.1). The temperature rise will be still within limits of class F.

The slot insulation consists of Nomex-polyster-Nomex (NPN). All insulation materials used are adequately resistant to the action of microbes and fungi.

Winding & Insulation for Inverter Duty Motors

- The stators are wound with polysteremide coated with polyamide-imide top coat, (dual coated) wires as per IS 13730 : part 13, grade -II thermal class 200 copper wires.
- Vacuum Pressure Impregnation (VPI) is provided to windings.

Depending on the voltage wave rise time (dv/dt) and the

maximum peak to peak voltage at the motor terminals, suitable insulation schemes are provided.

On customer's demand, insulated bearings are offered from frame size 132 and onwards on the NDE side of the motor.

Options

Motors with class 'H' insulation can be offered on request.

Thermal Protection (For Winding & Bearing)

PTC Thermisters / thermostats. RTD etc. can be embedded in stator winding on request. In case of frame sizes 250M & above Bearing Temperature Detectors (BTD) can be supplied on request.

Earthing Terminals

Two earthing terminals are provided on the body and one terminal is provided in the terminal box.

Anti-condensation Method

In order to avoid condensation of water inside the motors, they can be heated up by connecting a voltage 4 to 10% of rated voltage to the motor terminals. Adequate heating is obtained with current equal to 20-25% of rated motor current. Alternatively any of the methods indicated in IS : 900 for heating stator winding could be adopted.

Motors can also be offered with built in space heaters in frame size 90 and above.

MECHANICAL FEATURES

Enclosures: (Material & Terminal box location)

Motors are offered with following enclosure

Frame Size	Enclosure	Terminals Box Location		
	Materials	Standards	Option Available	
63-80	Aluminum	ТОР		
90S-112M	Aluminum	TOP		
	Cast Iron	RHS	TOP & LHS	
132S & 132M	Aluminum	ТОР	-	
132S-225M	Cast Iron	RHS	TOP & LHS	
250M-355L	Cast Iron	ТОР	RHS & LHS	

All foot mounted motors are with integral feet construction. All motors up to 280 frame are with integral bearing covers and motors in frame 315 and above are with separate bearing covers.

Cooling

All motors are totally enclosed Fan Cooled (TEFC) The cooling is effected by self driven, bi-directional centrifugal fan protected by fan cover. The Type of cooling is as per IS 6362 / IEC 60034-6. Forced cooing arrangement can be provided for frame 132S and above.

Table 2

Cooling Type	Cooling Code	
TEFC	IC 411	Standard
TENV	IC 410	On Demand
FORCED COOLED	IC 416	On Demand

Degree Protection

All motors have IP55 degree of protection as per IS/IEC 60034-5. Higher degree of protection such as IP56, IP66 can be provided on request. All flanged motors are additionally provided with oil tight shaft protection on driving end side.

			ng nos. earance	Terminals	Tern	ninals	No. &	Max. Cond.
Fram	e Size	DE	NDE	Box Type / Location	No.	Size	size of cable entries	Cross Sec. area mm
6	53	6201 2Z	6201 2Z					
7	/1	6202 2Z	6202 2Z	gk030/	6			4
8	30	6004 2Z	6004 2Z	Тор		M4	1×3/4"	
905	,90L	6205 2Z	6205 2Z	gk130/Top	6	1014		6
10)0L	6206 2Z	6205 2Z	gk230/	6			
11	2M	6206 2Z	6205 2Z	Тор	0		2×1"	10
132S	,132M	6208 2Z	6208 2Z	gk330/Top	6	M5	2~1	
160N	1,160L	6309 2Z	6209 2Z	gk330/RHS	0			16
180N	1,180L	6310 2Z	6210 2Z	gK430/ RHS	6	M6	2× 1-1/2"	50
20	00L	6312	6212	ТВ	6	M8		70
2255	5, 225	6313	6213	225/RHS				70
25	0M	6315	6215	TB280/	6		2 × 2"	
280	2P	6316	6316	Тор	0	M10		150
S/M	4, 6 & 8P	6317	6316	юр				150
315	S/M					M12		
		6319	6319	TB315/ Top	6		2 × 2"	240
31	15L	6319	6319				2 × 2 1/2"	
35	55L	6322	6322	TB355/Top	6	M16	2 × 3"	300

Bearing & Terminals Box Details

Note: L10 bearing life is 50,000 hours for directly coupled loads through flexible couplings only

Roller Bearing and Insulated Bearing

Alternatively motors with insulated bearing on NDE side can be offered from frame size 1325 & above on request at extra price.

Motors can also be offered with cylindrical roller bearing (NU) on DE side for frame sizes 132S and above at extra price.

Grease

Sealed for life bearing (2Z) are filled with grease Unirex N3-of ESSO. Others are filled with LGMT3 of SKF make. Special high temperature grease can be provided on request.

On line Re-Greasing

On line re-greasing arrangement is provided in frame sizes 225S and above. For frame size 180M, 180L and 200L it can be provided on request.

Rotor

Entire range of motors is fitted with dynamically balanced aluminum pressure die cast squirrel cage rotors.

Shaft

All motors are provided with single shaft extension in accordance with IS: 1231. The Shaft material is C40 (EN8) Steel. However any special shaft extension and / or special shaft material e.g. EN24 or stainless steel grades are also provided on request.

Balancing & Vibration

Rotors are dynamically balanced with a half key in the shaft extension. Vibration grade is 'reduced grade' conforming to IS: 12075. Other grades as per IS 12075 or IEC 60034-14 can be provided on request.

Noise Level

Motors are designed for noise level well below the limits specified in IS: 12065

Paint

All motors are painted with acrylic paint in Blue colour, RAL shade No. 5000. Motors used in corrosive atmosphere are painted with Epoxy base paint. Any other shade or material (e.g. polyurethane paint) can be offered on request.

Packing

Motors up to 132M frame are packed in thermacol / corrugated boxes. Wooden packing boxes are provided for higher frame size. Export worthy packing is also available on request.

Bharat Bijlee IE2 motors suitable to run with VFDs

Bharat Bijlee offers the entire range of motors suitable to run with VFDs.

Motors are suitable for :

- Constant torque application like crane, hoist, reciprocating compressor etc.
- Variable torque application like centrifugal pump, fan, blowers etc.
- Constant power application like metal cutting lathes, wire winding machines etc. and are custom built to suit customer's requirements.

Motors for constant torque application suitable for speed range of 1:10, 1:5, 1:2 etc can be provided. Depending on the speed range, motors can be offered with forced cooling (IC416) or in higher frame sizes 132S and above. **Please check with our sales office, for motors to be operated above 1.5 times the synchronous speed.**

PWM, IGBT devices operate at very high frequencies (2 kHz to 15 kHz) and have very short rises times leading to high dv/dt.

Longer cable lengths also contribute to higher voltages at the motors terminals due to standing wave phenomenon. These stress the insulation of the motors. Bharat Bijlee motors are provided with special impregnation system /vacuum pressure impregnation and dual coated winding wire to take care of these stresses. This insulation conforms to the requirements given in IEC 60034-18-41. For voltage higher than 500 V, refer to our sales office.

All the motors are provided with six terminals in the terminal box. Shaft induced voltage occurs due to the use of VFD. This causes flow of currents through bearing which can lead to premature bearing failure. Insulated bearings can be provided in frames from 132S onwards on request.

In closed loop system operations, speed feedback is obtained through encoder mounted on the shaft of the motors. We provide encoder mounting arrangements on Non Drive End side shaft of the motors on request.

For further details and technical offer, please refer to our Sales office in your area.

Payback Calculations:

Effect of additional stray load losses for efficiency determination as per IS 12615-2011

The new standard follows IS 15999 / IEC 60034-2-1 for arriving at the stray load losses. These losses can vary from 2.5% in small motors to 0.5% in higher ratings up to 1MW. The earlier standard IS 12615-2004 used for eff1 motors assumed stray losses as 0.5% of output. Hence the efficiency values tested by the earlier standard would be 0.5% to 1.5% higher than the new standard for the same motor.

Example is as given below

Rating 4 Pole	Eff1 specified in IS 12615-2004 (%)	IE2 specified in IS 12615-2011 (%)	Reduction in efficiency from eff1 Due to additional stray losses (%)
11kW	91.0	89.8	1.2
55kW	94.2	93.5	0.7

When comparing eff1 motor & IE2 motor, it is necessary to note the difference in testing methods. The standard has reduced the efficiency value to take care of this. At first glance a customer would feel that an IE2 motor is inferior to an Eff1 motor though both might be identical.

Hence for any comparison, it is necessary to use the same method of loss calculation. The worked out example shown below gives the energy savings per year (for 8000 hours running) of a Bharat Bijlee IE2 motor (normalized for 0.5% stray loss) over a Bharat Bijlee standard IS 325 motor

0	BBL IS325 Catalogue (eff%)		Input Power (kW)	Additional Stray losses (kW)	Nomalized IE2 Eff with 0.5% Stray losses assumed	IS 325 losses (kW)	IE2 losses (kW)	Saving (kW)	Saving in kW/Year @8000 Hrs running
11	89.0	89.8	12.249	0.187(0.2424- 0.0550)	91.2	1.360	1.062	0.298	2380
55	93.8	93.5	58.824	0.684 (0.959- 0.275)	94.6	3.636	3.140	0.496	3968

ations:
Calcula
Saving (
Energy 3

Table shown below gives the energy savings per year (for 8000 hours running) of a Bharat Bijlee IE2 motor (normalized for 0.5% stray loss) over a Bharat Bijlee standard IS 325 motor

	Saving in kWh/Year @8000 Hrs running		122	122 429	122 429 434	122 429 434 550	122 429 434 550 850	122 429 434 550 850 895	122 122 429 434 550 850 850 895 334	122 429 434 550 850 895 895 334 1462	122 429 434 550 850 895 895 334 1462 1462	122 429 434 550 850 850 895 334 1462 473 1307	122 429 434 550 850 850 895 334 1462 473 1307 1726	122 429 434 550 850 895 334 1462 473 1307 1307 1307 1489	122 429 434 550 850 895 334 1462 473 1307 1726 1489 1206	122 429 434 550 850 895 895 334 1462 176 1726 1307 1726 1489 1206 1989	122 429 429 550 850 895 895 334 473 1307 1726 1462 1726 1489 1726 1726 1989 3080	122 429 434 550 850 850 895 895 334 473 1307 1726 1462 473 1307 1726 1489 1206 1289 3080 2940 2940	122 429 434 550 850 850 895 334 473 1307 1726 1307 1726 1307 1726 1307 1307 1308 2940 2940 2940	122 429 434 550 850 850 895 334 473 1307 1726 1307 1726 1307 1726 1307 1307 1320 3080 3080 3323 3323	122 429 434 550 850 850 895 334 1462 473 1307 1726 1307 1726 1307 1206 1307 1206 1307 3423 3423
6 Pole	Normalized IE2 Eff with 0.5% Stray losses		70.0	70.0 74.0	70.0 74.0 77.1	70.0 74.0 77.1 79.8	70.0 74.0 77.1 79.8 81.4	70.0 74.0 77.1 79.8 81.4 83.4	70.0 74.0 77.1 79.8 81.4 83.4 85.8	70.0 74.0 77.1 79.8 81.4 83.4 83.4 83.4 83.5 83.5	70.0 74.0 77.1 77.1 79.8 81.4 83.4 85.8 85.8 87.5 88.6	70.0 74.0 77.1 79.8 81.4 83.4 83.4 85.8 87.5 87.5 89.4	70.0 74.0 77.1 79.8 81.4 83.4 83.4 85.8 87.5 88.6 88.6 89.4 90.1	70.0 74.0 77.1 79.8 81.4 83.4 85.8 87.5 88.6 88.6 89.4 89.4 90.1 91.0	70.0 74.0 77.1 79.8 81.4 83.4 83.4 83.4 83.4 83.4 83.4 83.4 83	70.0 74.0 77.1 79.8 81.4 83.4 83.4 83.4 83.4 83.6 83.6 83.6 83.6 83.6 83.6 87.5 83.6 80.1 90.1 91.0 91.7 92.1	70.0 74.0 77.1 79.8 81.4 83.4 83.4 83.4 83.4 83.4 83.6 83.4 83.6 83.4 83.6 83.6 83.6 83.6 81.0 91.0 91.0 91.7 92.9	70.0 74.0 77.1 79.8 81.4 83.4 83.4 83.4 83.4 83.4 83.4 90.1 91.7 91.7 92.9 92.9 92.9 93.4	70.0 74.0 77.1 77.1 79.8 81.4 83.4 83.4 83.4 83.4 83.4 83.4 83.4 91.0 91.0 91.0 91.7 92.9 92.9 92.9 93.4	70.0 74.0 77.1 79.8 81.4 85.8 87.5 88.6 88.6 89.4 90.1 91.7 91.7 91.7 91.7 92.9 93.4 93.8 93.4 93.8	70.0 74.0 77.1 79.8 81.4 83.4 85.8 87.5 90.1 91.0 92.1 92.3 93.4 93.8 94.2
9	IE2 Catalogue (Eff%)	5	69	69 72.9	69 72.9 75.9	69 72.9 75.9 78.1	69 72.9 75.9 78.1 79.8	69 72.9 75.9 78.1 79.8 81.8	69 72.9 75.9 78.1 79.8 81.8 84.3	69 72.9 75.9 78.1 79.8 81.8 84.3 86	69 72.9 75.9 78.1 79.8 81.8 84.3 86 87.2	69 72.9 75.9 79.8 81.8 84.3 84.3 86 87.2 88 88	69 72.9 75.9 79.8 81.8 84.3 84.3 86 87.2 88 88.7 88.7	69 72.9 75.9 78.1 79.8 81.8 81.8 84.3 84.3 84.3 86 87.2 88 88.7 88.7 89.7	69 72.9 75.9 78.1 79.8 81.8 84.3 84.3 84.3 84.3 84.3 84.3 84.3 88.7 88.7 88.7 88.7 89.7 90.4	69 72.9 75.9 88.1 84.3 84.3 84.3 84.3 84.3 84.3 84.3 88.7 88.7 88.7 88.7 88.7 89.7 90.4 90.9	69 72.9 75.9 75.9 75.9 78.1 79.8 81.8 84.3 84.3 84.3 84.3 86 87.2 88.7 88.7 88.7 89.7 90.9 90.9	69 72.9 75.9 75.9 79.8 81.8 84.3 84.3 87.2 88.7 88.7 88.7 88.7 88.7 90.4 90.9 91.7 92.2	69 72.9 75.9 75.9 79.8 81.8 84.3 84.3 84.3 84.3 88.7 88.7 88.7 88.7 88.7 90.9 90.9 91.7 92.7	69 72.9 75.9 75.9 79.8 84.3 84.3 84.3 84.3 84.3 84.3 84.3 84.3 84.3 84.3 84.3 84.3 87.2 88.7 88.7 88.7 88.7 88.7 88.7 90.4 90.4 91.7 92.2 93.1	72:9 72:9 72:9 79.8 84.3 84.3 84.3 84.3 84.3 88.7 88.7 88.7 88.7 88.7 88.7 88.7 89.7 90.4 91.7 91.7 92.2 92.2 92.7 92.7 92.7 92.7 92.7 92
	BBL IS325 Catalogue (Eff%)	68		69	69 73	69 73 76	69 73 76 77	69 73 76 77 80	69 73 76 77 80 85	69 73 76 77 80 85 85	69 73 76 77 80 85 85 88	69 73 76 77 80 85 85 88 88	69 73 76 77 80 85 85 88 88 88.5	69 73 76 77 80 85 85 88 88 88 88 88 88 88 88 88 88 88	69 73 76 77 80 85 85 88 88 88 88 88 88 88 88 88 88 88	69 73 76 77 80 85 85 88 88 88 88 88 88 88 88 88 90 91.2	69 77 77 80 85 85 88 88 88 88 88 88 88 88 90 91.2 91.8	69 77 76 77 80 80 85 88 88 88 88 88 88 88 88 90 91 91.2 91.2 92.5	69 73 76 77 80 85 85 88 88 88 88 88 88 88 88 90 91 91.2 91.2 91.2 91.2 91.3 92.5	69 73 76 77 80 85 85 88 88 88 88 88 88 88 88 88 88 90 91.2 91.2 91.2 91.2 91.3 93.5	69 73 76 77 80 85 85 88 88 88 88 88 88 88 88 88 91 91.2 91.2 91.2 91.2 91.3 91.3 93.5 93.5
	Saving in kWh/Year @8000 Hrs running	37		212	212 413	212 413 695	212 413 695 797	212 413 695 797 984	212 413 695 797 984 1137	212 413 695 797 984 1137 1137	212 413 695 984 1137 1137 1137 2417 2417	212 413 695 797 984 1137 1137 1137 1840 2417 2417 2538	212 413 695 695 797 984 1137 1137 1137 1137 2417 2417 2417 2380	212 413 695 984 1137 1137 1137 1137 2417 2417 2538 2538 2538	212 413 695 984 1137 1840 2847 2417 2417 2538 2380 2538 2380 2520 2289	212 413 695 984 1137 1840 28417 2417 2417 2538 2380 2520 2520 2289 2215	212 413 695 797 984 1137 1137 1137 1137 28417 2417 2417 2417 2538 2380 2538 2520 2520 2520 2528 2289 2289	212 413 695 984 1137 1840 28417 2417 2417 2417 2417 2520 2538 2538 2520 2520 2520 2520 2289 2289 2215 2215 2215 2215	212 413 695 984 1137 1840 28417 28417 28417 28417 28417 28417 28417 28417 28417 28417 28380 25389 2520 2520 2520 2520 2520 2520 2520 252	212 413 695 695 984 1137 984 1137 1840 2417 2417 2417 2417 2538 2538 2538 2538 2520 2520 2520 2520 2520 2520 2520 252	212 413 695 984 1137 984 1137 1840 2840 2417 2538 2417 2538 2538 2538 2538 2520 2520 2520 2520 2520 2520 2520 252
ale	Normalized IE2 Eff with 0.5% Stray (losses	71.6		76.7	76.7 81.3	76.7 81.3 83.1	76.7 81.3 83.1 84.5	76.7 81.3 83.1 84.5 84.5 85.9	76.7 81.3 83.1 84.5 85.9 87.9	76.7 81.3 83.1 84.5 85.9 87.9 87.9 87.9	76.7 81.3 81.3 83.1 84.5 84.5 85.9 87.9 87.9 89.2 89.2	76.7 81.3 81.3 83.1 84.5 84.5 85.9 87.9 87.9 89.2 90.2 90.7	76.7 81.3 81.3 83.1 84.5 85.9 87.9 87.9 87.9 87.9 87.9 87.9 87.9 87	76.7 81.3 81.3 83.1 84.5 85.9 87.9 87.9 87.9 87.9 90.2 91.2 91.2	76.7 81.3 81.3 83.1 84.5 87.9 87.9 87.9 87.9 90.2 90.7 91.2 91.2	76.7 81.3 81.3 83.1 84.5 84.5 84.5 87.9 87.9 87.9 87.9 90.7 90.7 91.2 91.9 92.5 92.5	76.7 81.3 81.3 81.3 81.3 83.1 83.1 83.1 83.1 83.1 84.5 84.5 87.9 87.9 87.9 87.9 87.9 90.2 90.2 91.2 92.5 92.9 93.5	76.7 81.3 81.3 83.1 84.5 84.5 84.5 87.9 87.9 89.2 90.7 91.2 91.2 91.2 91.9 91.5 93.5 93.5	76.7 81.3 81.3 81.3 81.3 81.3 81.3 81.3 81.3 81.3 81.3 81.3 81.3 81.3 81.3 81.5 82.9 90.2 90.2 91.9 91.9 91.9 91.9 91.9 91.9 91.9 91.9 91.9 91.9 91.9	76.7 81.3 81.3 81.3 83.1 84.5 89.2 90.2 90.2 91.2 91.2 91.9 91.9 92.9 92.9 92.9 92	76.7 81.3 81.3 83.1 84.5 85.9 87.9 87.9 87.9 87.9 90.7 91.2 91.2 91.2 91.2 91.2 91.2 91.9 91.9
4 Pole	LE2 Catalogue (Eff%) (Eff%)	70.1	75 1	1.0.1	1.5.7	79.6	79.6 81.4 82.8	79.6 79.6 81.4 82.8 84.3	79.6 79.6 81.4 82.8 84.3 86.3	79.6 79.6 81.4 82.8 84.3 86.3 86.3 87.7	79.6 79.6 81.4 82.8 84.3 86.3 87.7 88.7	79.6 81.4 82.8 84.3 86.3 86.3 87.7 88.7 89.3	79.6 81.4 81.4 82.8 84.3 84.3 86.3 87.7 88.7 89.3 89.3 89.3	79.6 81.4 81.4 82.8 84.3 84.3 84.3 86.3 87.7 88.7 88.7 89.3 89.3 89.3 80.6	79.6 81.4 81.4 82.8 84.3 84.3 84.3 84.3 87.7 88.7 88.7 89.3 89.3 89.3 89.8 89.8	79.6 81.4 81.4 82.8 82.8 84.3 84.3 84.3 87.7 87.7 88.7 89.3 89.3 89.8 89.8 90.6 91.2	79.6 81.4 81.4 82.8 84.3 84.3 87.7 88.7 88.7 88.7 88.7 89.3 89.3 89.3 89.3 91.6 91.2 91.2 91.2	79.6 81.4 81.4 82.8 84.3 84.3 84.3 84.3 87.7 88.7 88.7 88.7 88.7 89.3 89.3 89.3 89.3 89.3 91.6 91.6 92.3	79.6 81.4 81.4 82.8 82.8 84.3 84.3 84.3 87.7 88.7 88.7 88.7 89.3 89.3 89.3 91.6 91.2 91.6 91.2 92.3 92.3	79.6 81.4 81.4 82.8 84.3 84.3 84.3 84.3 87.7 88.7 88.7 89.3 89.3 89.3 89.3 89.3 91.6 91.6 91.6 91.6 91.6 93.1 93.1	79.6 81.4 81.4 82.8 84.3 84.3 84.3 84.3 84.3 87.7 88.7 89.3 89.3 89.3 89.3 89.3 89.3 91.6 91.6 91.6 91.6 91.6 91.6 91.6 93.5 93.5 93.5
	BBL IS325 Catalogue ((Eff%)	71	74		77	77 78	77 78 80	77 78 80 82	77 78 80 82 85	77 78 80 82 85 86	77 78 80 82 85 85 87	77 78 80 82 82 85 86 88 88	77 78 80 82 85 85 87 88 89 89	77 78 80 82 85 85 87 88 88 88 89 90.2	77 78 80 82 85 85 86 87 87 88 88 88 88 89 91.2	77 78 80 82 85 85 86 87 87 87 88 88 89 89 91.2 91.2	77 78 80 82 85 85 85 86 87 87 87 88 88 89 89 90.2 91.2 91.2 91.3	77 78 80 82 85 85 87 87 87 87 87 87 87 87 87 87 87 87 87	77 78 80 82 85 85 85 86 87 87 87 87 87 87 87 87 87 87 87 87 87	77 78 80 82 85 85 85 86 87 88 88 88 88 88 89 91.2 91.2 91.2 91.3 93.2 93.2	77 78 80 82 85 85 86 87 87 87 87 87 89 89 91.2 91.2 91.2 91.2 91.3 91.3 93.8 93.8
	Saving in kW/Year @8000 Hrs running	157	188	200	701	201 303	201 303 412	201 303 412 570	201 303 412 570 805	201 203 303 412 412 570 805 1426	201 303 412 570 805 1426 1944	201 303 412 570 805 805 1944 1944 2056	201 303 570 570 805 1426 1944 2056 1927	201 303 570 570 805 1426 1944 2056 1927 3101	201 303 570 570 805 1944 1944 2056 1927 3101 2989	201 303 412 570 805 805 1426 1944 2056 1927 3101 2989 2190	201 303 412 570 805 805 805 805 805 805 1944 1944 2056 1927 3101 2989 2190 2190	201 303 370 570 805 1426 1944 1944 2056 1944 2056 1927 3101 2989 2190 2190 2190	201 203 303 570 570 805 805 805 1944 1927 1927 3101 2989 2190 2190 2190 2143 2143	201 201 303 412 570 805 1426 1944 2056 1944 2056 1927 3101 2989 2989 2989 2190 2143 2143 2143	201 303 570 570 805 1426 1944 2056 1927 3101 2989 2989 2989 2989 2989 2143 2143 2143 2143 2549
U	Normalized IE2 Eff with 0.5% Stray (6 losses	73.8	76.4	70.0	2.01	81.2	81.2 82.9	81.2 82.9 84.8	81.2 82.9 84.8 87.0	81.2 81.2 82.9 84.8 87.0 88.5	81.2 81.2 82.9 84.8 87.0 88.5 88.5 89.5	81.2 81.2 82.9 84.8 84.8 87.0 88.5 89.5 89.5 89.5 80.2	81.2 81.2 82.9 84.8 87.0 88.5 89.5 90.2 90.2	7.2.0 81.2 82.9 84.8 84.8 84.8 83.5 89.5 90.2 91.6	7.2.0 81.2 82.9 84.8 84.8 84.8 84.8 83.5 83.5 83.5 90.2 90.8 91.6 91.6	81.2 81.2 82.9 84.8 84.8 84.8 84.8 84.5 83.5 83.5 90.2 90.8 91.6 92.6	81.2 81.2 82.9 84.8 84.8 87.0 88.5 90.2 90.2 90.8 91.6 92.2 92.6 92.2 92.6	73.0 81.2 82.9 84.8 84.8 87.0 90.2 90.2 90.2 91.6 92.2 93.2 93.2	7.9.0 81.2 81.2 82.9 84.8 84.8 87.0 88.5 89.5 90.2 90.2 91.6 91.6 91.6 92.2 93.2 93.7 94.0	7.9.0 81.2 81.2 82.9 84.8 84.8 84.8 87.0 87.0 90.2 90.2 91.6 91.6 92.6 93.7 94.0 94.3	7.9.0 81.2 81.2 82.9 84.8 84.8 87.0 87.0 84.8 90.2 90.2 91.6 91.6 92.6 92.6 93.7 94.0 94.3 94.8
2 POIE	IE2 Catalogue 0 (Eff%)	72.2	74.8	77.4		79.6	79.6 81.3	79.6 81.3 83.2	79.6 81.3 83.2 85.5	79.6 81.3 83.2 85.5 87	79.6 81.3 83.2 85.5 87 88.1	79.6 81.3 83.2 83.2 85.5 87 88.1 88.1 88.8	79.6 81.3 83.2 85.5 85.5 87 88.1 88.1 88.8 89.4	79.6 81.3 83.2 85.5 85.5 87 88.1 88.1 88.8 89.4 80.3	79.6 81.3 83.2 85.5 85.5 87 87 88.1 88.1 88.8 89.4 90.3 90.3	79.6 81.3 83.2 83.2 85.5 87 87 88.1 88.1 88.8 88.8 89.4 90.3 91.3	79.6 81.3 81.3 81.3 83.2 83.2 83.2 87 87 87 88.1 88.8 88.1 89.4 90.3 90.3 91.3 91.3 92	79.6 81.3 81.3 83.2 85.5 83.2 83.4 88.4 88.4 88.8 88.4 90.3 90.3 91.3 92.5	79.6 81.3 81.3 85.5 85.5 85.5 85.5 85.5 85.5 85.5 87 88.1 88.8 88.8 88.4 89.4 90.3 90.3 91.3 92.5 92.5 92.5	79.6 81.3 81.3 81.3 83.2 85.5 85.5 85.5 85.5 85.5 85.4 88.1 88.1 88.8 89.4 90.3 90.3 91.3 91.3 92.5 92.5 93.2 93.2	79.6 81.3 81.3 81.3 83.2 83.2 85.5 85.5 85.5 85.5 85.4 88.1 88.8 88.1 88.8 89.4 90.3 90.3 90.3 91.3 91.3 92.5 92.9 93.2 93.2
	BBL IS325 Catalogue C (Eff%)	71	74	77	_	79	79 80.6	79 80.6 82.5	79 80.6 82.5 85	79 80.6 82.5 85 86	79 80.6 82.5 85 86 87 87	79 80.6 82.5 85 86 87 88 88	79 80.6 82.5 85 85 87 87 88 88 89	79 80.6 82.5 85 85 86 87 88 88 89.5	79 80.6 82.5 85 85 86 87 87 88 88 89.5 89.5	79 80.6 82.5 85 85 86 87 87 87 88 89 89.5 90.5	79 79 80.6 80.6 81.5 82.5 85 87 86 87 87 88 89 89 89.5 90.5 91.5 92.6	79 79 80.6 80.6 81.5 82.5 85 85 86 87 87 83 88 83 89.5 89.5 90.5 91.5 93 93	79 79 80.6 80.6 80.5 82.5 85 85 86 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 88 89 89 89 89 89 90.5 91.5 93.5 93.5	79 79 80.6 80.6 82.5 82.5 82.5 82.5 85 85 86 87 87 88 89.5 89.5 90.5 90.5 91.5 91.5 93.5 93.5	79 79 80.6 80.6 82.5 82.5 82.5 82.5 85 85 86 87 87 88 89.5 89.5 90.5 90.5 91.5 91.5 93.5 93.3 93.3 93.3
	Rating B kW	0.37	0.55	0.75		1.1	1.1 1.5	1.1 1.5 2.2	1.1 1.5 2.2 3.7	1.1 1.5 2.2 3.7 5.5	1.1 1.5 2.2 3.7 5.5 7.5	1.1 1.5 2.2 3.7 5.5 9.3	1.1 1.5 2.2 3.7 5.5 7.5 9.3 9.3	1.1 1.5 1.5 2.2 3.7 5.5 5.5 7.5 9.3 9.3 11 11	1.1 1.5 1.5 2.2 3.7 5.5 7.5 7.5 9.3 11 11 18.5	1.1 1.5 1.5 2.2 3.7 5.5 7.5 9.3 11 11 11 18.5 22	1.1 1.5 2.2 2.2 3.7 5.5 7.5 9.3 9.3 9.3 11 11 11 13.5 30 30	1.1 1.5 2.2 2.2 3.7 5.5 7.5 9.3 9.3 11 11 11 11 18.5 22 33 37	1.1 1.5 1.5 2.2 3.7 5.5 5.5 7.5 9.3 9.3 11 11 11 15 18.5 22 30 37 37	1.1 1.5 1.5 2.2 2.2 3.7 5.5 5.5 9.3 11 11 15 18.5 22 30 37 45 55	1.1 1.5 1.5 2.2 3.7 5.5 7.5 9.3 11 11 11 11 11 11 18.5 22 22 30 37 45 55 55

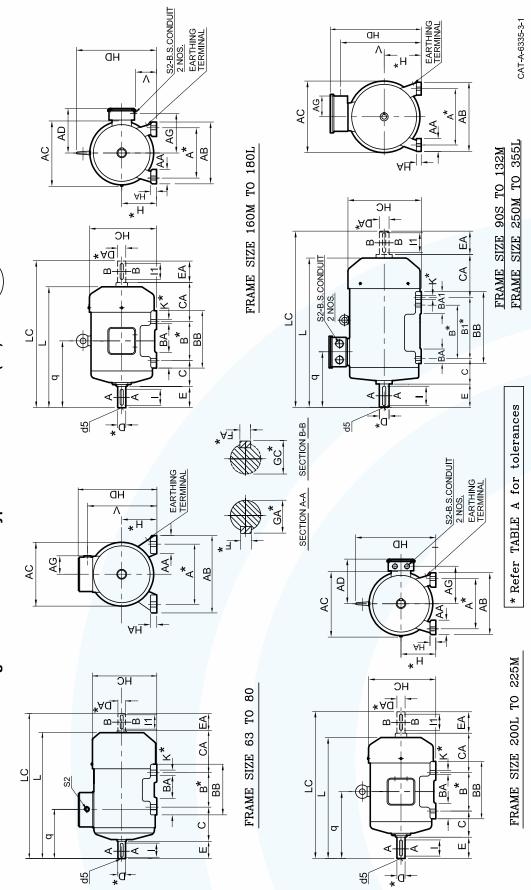
S
Vloto
<u>م</u>
Pole
, '
p
LL ()
Table
nance
_
erfor
Ре

		Net	Weight	B	Constn. Kg	7	7	10	11	17	20	26	51	57	105	112	120	137	117	274	274	353	550	669	750	898	940	940	1100	1100	1390	1390	1680	1870
		Rotor	GD ²		kgm²	0.0019	0.0019	0.0037	0.0051	0.0091	0.0113	0.0212	0.0820	0.0980	0.1500	0.171	0.203	0.268	0.34	0.61	0.61	1.13	2.60	3.01	3.42	5.0	5.0	5.0	6.2	6.2	7.7	7.7	12.0	14.7
: F : B : : IP55		Pullout	Torque	to Rated	l orque Ratio	3.0	3.0	2.8	3.0	3.0	3.0	3.0	3.0	3.0	2.8	3.0	2.8	3.0	2.7	2.6	2.5	2.5	2.7	2.8	2.8	2.5	2.6	2.5	2.5	2.5	2.5	2.5	2.4	2.4
Ins. Class : F Temp. Rise : B Protection : IP55	Starting	Starting	Torque	to Rated	lorque Ratio	2.6	2.7	2.5	2.7	3.3	3.3	3.0	2.5	2.5	2.3	2.3	2.3	2.4	2.4	2.5	2.4	2.5	2.3	2.2	2.2	2.0	2.2	2.0	2.0	2.0	2.0	2.0	1.6	1.6
	With DOL Starting	Starting	Current	to Rated	Current Ratio	5.0	5.0	5.0	6.0	6.5	6.5	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0
o 355L uous)					1/21	66.0	70.0	73.5	75.5	78.0	81.7	83.5	82.0	83.0	84.5	86.5	87.0	88.8	88.8	89.5	90.0	91.0	90.06	92.0	90.9	91.5	91.5	91.3	92.2	93.0	93.0	93.3	92.8	93.0
ne size 71 to 355 : 50 °C : 51(Continuous)		% Efficiency			3/4L	72.2	74.0	76.5	79.6	81.3	83.2	85.5	86.0	87.0	88.6	89.4	90.2	90.7	91.0	92.0	92.0	92.7	92.7	93.6	93.9	94.1	93.5	93.6	93.7	94.1	94.1	94.5	94.5	94.5
itors - Fram Ambient: Duty				i	FL	72.2	74.8	77.4	79.6	81.3	83.2	85.5	87.0	88.1	88.8	89.4	90.3	90.9	91.3	92.0	92.5	92.9	93.2	93.8	94.1	94.3	94.5	94.6	94.7	94.8	94.9	95	95.0	95
uction Mo					1/2L	0.60	0.58	0.62	0.63	0.68	0.68	0.76	0.77	0.77	0.82	0.82	0.82	0.86	0.83	0.80	0.80	0.78	0.86	0.83	0.87	0.78	0.76	0.78	0.76	0.77	0.75	0.77	0.84	0.84
TEFC 3 Phase Squirrel Cage Induction Motors - Frame size 71 to 355L : 415V+/-10% Ambient: : 50 °C : 50H2+/-5% Duty : 51(Continuous) riation : +/-10% 3000 rpm (2-Pole)	ed output	Power Factor			3/4L	0.68	0.72	0.74	0.75	0.78	0.78	0.84	0.85	0.85	0.86	0.86	0.88	0.89	0.87	0.86	0.86	0.85	0.91	0.88	0.89	0.86	0.85	0.86	0.84	0.85	0.82	0.85	0.88	0.88
ase Squirre 10% 5% '-10%	icteristics at Rat	Н		i	FL	0.74	0.79	0.82	0.82	0.82	0.82	0.86	0.89	0.89	0.89	0.89	0.89	06.0	0.89	0.89	0.89	0.88	0.92	0.90	0.91	0.90	0.89	0.90	0.89	0.90	0.88	0.90	0.90	0 90
TEFC 3 Phase S Voltage : 415V+/-10% Frequency : 50Hz+/-5% Combined Variation : +/-10%	Operating Characteristics at Rated output	Rated	Torque	2	Kg.m	0.130	0.190	0.256	0.380	0.514	0.755	1.24	1.83	2.49	3.09	3.66	4.99	6.15	7.30	9.89	12.2	14.8	18.1	24.6	29.5	35.9	40.8	43.1	49.0	52.3	58.80	65.30	81.60	102.80
Voltage Frequency Combined V	0	Current			Amps.	0.96	1.29	1.64	2.34	3.13	4.49	7.00	9.9	13.3	16.4	19.2	26.0	31.5	37.7	51.0	62.5	76.6	89.2	124	146	180	207	216	248	261	300	325	407	513
		Rated	Speed		RPM	2800	2805	2830	2830	2840	2840	2890	2930	2930	2930	2930	2930	2930	2935	2950	2950	2965	2965	2970	2970	2982	2982	2982	2982	2982	2982	2982	2985	2985
	Type	Ref.		ć	B3 Construction	2H0712A3	2H071233	2H080213	2H080233	2H09S243	2H09L273	2H10L233	2H13S2G3	2H13S2N3	2H16M233	2H16M253	2H16M263	2H16L293	2H18M233	2H20L2A3	2H20L253	2H22M253	2H25M233	2H28S233	2H28M253	2H31S233	2H31M2A3	2H31M233	2H31L2A3	2H31L253	2H31L2B3	2H31L273	2H35L213	2H35L233
	Frame	size		c L	IEC	71	71	80			106	100L		132S	160M	1	160M	160L	180M	200L					280M	315S	315M	315M	315L	315L	315L	315L	355L	355L
	out			4	ЧН	0.50	0.75	1.0	1.5	2.0	3.0	5.0	7.5	10.0	12.5	15.0	20.0	25.0	30.0	40.0	50.0	60.0	75.0	100	120	150	170	180	200	215	240	270	335	475
	Rated Output				κw	0.37	0.55	0.75	1.1	1.5	2.2	3.7	5.5	7.5	9.3	11	15	18.5	22	30	37	45	55	75	90	110	125	132	150	160	180	*200	*250	*315

Motors
4- Pole
e For ,
mance Table
Perform :

							t		ċ	T		Τ	Τ	T		Τ																	_							
						Net	Weight	B3	Constn.	a B R		1	17	ŗ,	۲ I	26	36	50	56	105	115	128	188	200	275	362	377	500	670	735	902	1010	1010	1185	1185	1262	1305	1680	1855	2025
⊜						Rotor	GD ²			kgm²	0.0033	7/00/0	0.015		ATU.U	0.028	0.066	0.126	0.163	0.177	0.229	0.300	0.540	0.61	0.93	1.60	1.85	3.06	5.53	6.36	8.70	10.20	10.20	12.20	12.20	13.40	14.60	23.30	32.70	37.90
	ц. 	8	: IP55			Pullout	Torque	to Rated	Torque	Ratio	C.2	3.0	0.0	0.2	0.0	3.0	3.0	3.0	3.2	2.8	2.9	2.7	2.9	3.0	2.6	2.6	2.6	2.6	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5
	Ins. Class :	Temp. Rise : B	Protection : IP55		g	Starting	Torque	to Rated	Torque	Ratio	2.2	7.8 2.0	0'7	1 t	7.7	2.6	2./	2.6	2.6	2.5	2.7	2.4	2.7	2.6	2.6	2.6	2.6	2.5	2.2	2.2	2.1	2.2	2.1	2.2	2.1	2.1	2.2	2.2	2.2	2.2
	_	F			With DOL Starting	Starting	Current	to Rated	Current	Ratio	4. r	0.0	0.0	0.0	0.0	6.0	c.d	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0
355L		ous)			M				1/2L	C L U	0.00	68.U	74.0	0.01	10.0	81.5	83.8	86.0	86.8	86.5	87.5	89.4	89.5	89.8	90.06	90.5	90.8	91.0	92.0	92.0	92.3	92.7	93.0	92.8	93.1	93.2	93.3	93.5	93.5	93.5
e size 71 to	: 50 °C	: S1(Continuous)				Efficiency	-		3/4L	- OF	1.U/	1.c/	0.51	4.TO	07.0	84.3	86.3	87.4	88.4	89.3	89.8	90.6	91.2	91.6	92.0	92.5	92.8	93.0	93.5	94.0	94.3	94.3	94.5	94.4	94.6	94.7	94.8	94.9	94.8	94.9
ors - Frame	Ambient: :					%	-		Н	1 O L	T.U/	T.C/	0.51	4.TO	07.0	84.3	86.3	87.7	88.7	89.3	89.8	90.6	91.2	91.6	92.3	92.7	93.1	93.5	94.0	94.2	94.5	94.6	94.7	94.7	94.9	95.0	95.1	95.1	95.1	95.1
ction Mot	A	D		-Pole)		tor			1/2L	010	0.50	0.50	00	10.0	/6.0	0.59	0.63	0.70	0.76	0.73	0.76	0.70	0.76	0.72	0.78	0.77	0.77	0.76	0.80	0.80	0.77	0.77	0.78	0.77	0.78	0.78	0.78	0.75	0.75	0.75
Cage Indu	1			1500 rpm (4-Pole)	l output	Power Factor	-		3/4L	, j	70.0	0.64	00.0	0.10	0.70	0.73	0./8	0.80	0.83	0.82	0.82	0.80	0.82	0.80	0.82	0.85	0.85	0.84	0.86	0.86	0.83	0.83	0.85	0.83	0.86	0.86	0.86	0.85	0.85	0.85
se Squirrel	. %	%	10%		eristics at Rated				Н	1	1/.0	0./4	C/-D	11.0	0.77	0.81	0.82	0.85	0.86	0.84	0.85	0.85	0.85	0.85	0.86	0.87	0.87	0.86	0.88	0.88	0.86	0.86	0.87	0.86	0.87	0.87	0.87	0.88	0.88	0.88
TEFC 3 Phase Squirrel Cage Induction Motors - Frame size 71 to 355L	: 415V+/-10%	: 50Hz+/-5%	Combined Variation : +/-10%		Operating Characteristics at Rated output	Rated	lorque		Kg.m	0.20	07.0	0.377	OTC:0	c/.n	70'T	1.49	2.49	3.68	5.02	6.20	7.34	9.97	12.25	14.60	19.88	24.50	29.82	36.20	49.40	59.20	72.10	81.90	86.50	98.30	104.8	117.9	131.0	163.6	206.2	232.4
·	Voltage	Frequency	ombined Va		OF	Current			Amps.	1 03	1.03	1.38 1 -71	C/-T	4:+	7.5	4.48	17.1	10.2	13.8	17.2	20.0	27.1	33.2	39.3	52.6	63.8	77.3	95.2	126	151	188	214	223	256	270	303	336	416	524	590
	×	F	ŭ			Rated Cu	speed		RPM An	1200	138U	1420	1420	1430	143U	1435	1445	1455	1455	1460	1460	1465	1470	1470	1470	1470	1470	1480	1480	1480	1485	1486	1486	1487	1486	1487	1487	1488	1488	1488
						Type Ref.			B3	Construction	2HU/1433	2H080433			2009L4/3	2H10L473	2H11M4/3	2H13S4K3	2H13M4T3	2H16M4C3	2H16M4K3	2H16L4T3	2H18M473	2H18L483	2H20L453	2H22S433	2H22M453	2H25M433	2H28S423	2H28M453	2H31S413	2H31M4A3	2H31M433	2H31L4A3	2H31L453	2H31L463	2H31L473	2H35L413	2H35L433	2H35L453
					_	Frame size			EC			9H7 08									~	160L 2H:	180M 2H1	180L 2H:	200L 2H2	225S 2H2	225M 2H2	250M 2H2	280S 2H2	280M 2H2		315M 2H3	315M 2H3	315L 2H3	315L 2H3			355L 2H3		
						F 。			HP H	-				+						12.5 16		20.0 16	25.0 18	30 18			60 22		100 28	120 28	150 31	170 31	180 31	200 3.	215 3	240 3		335 35		475 35
					Rated Output									-																										
					Rat				κw		1.37	cc.U	r, v	1.1	C.1	2.2	3./	5.5	7.5	9.3	11	15	18.5	22	30	37	45	55	75	60	110	125	132	150	160	180	*200	*250	*315	**355

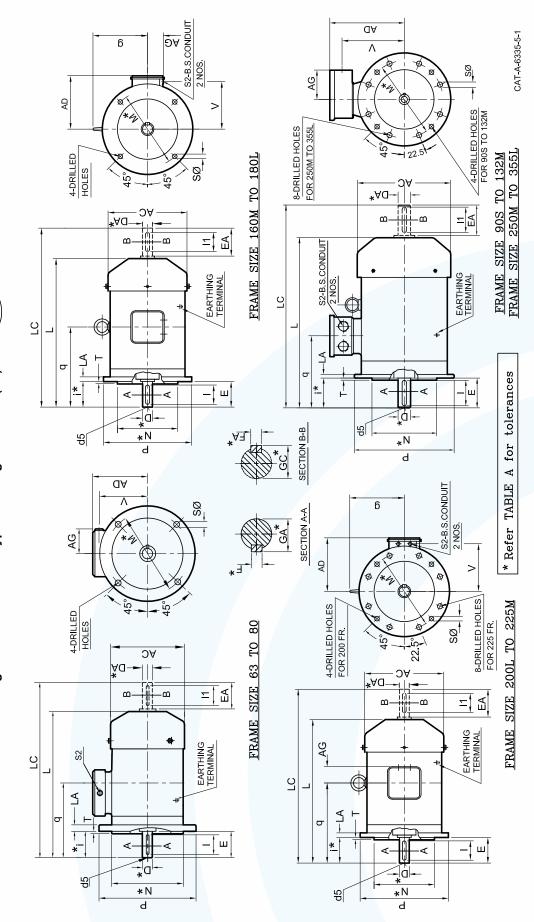
Note : All performance values are subject to tolerance as per IS/IEC 60034-1 Efficiency measurements are without seals. *- These ratings are suitable for ambient temperature 40°C **- These ratings are suitable for ambient temperature 40°C



ors
Mot
Pole
For 6-
able F
formance
Per

								1																											٦
				Net	Weight	B3	Constn. Kg	10	11	14	17	22	33	48	55	103	113	123	200	254	270	358	528	573	620	830	912	1010	1175	1175	1231	1231	1670	1670	1780
⊜				Rotor	GD ²		kem²	0.0060	0.0084	0.0122	0.0160	0.0250	0.065	0.130	0.193	0.276	0.34	0.40	0.82	1.20	1.37	2.41	3.72	5.11	6.16	10.7	12.4	15.5	18.0	18.0	21.5	21.5	28.7	28.7	35.5
	: F : B : IP55			Pullout	Torque	to Rated	Torque Ratio	2.3	2.5	2.5	2.6	2.5	2.5	2.5	2.50	2.5	2.5	2.5	2.3	2.3	2.3	2.2	2.3	2.4	2.4	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5
	lns. Class : F Temp. Rise : B Protection : IP55		starting	Starting	Torque	to Rated	Torque Ratio	2.1	2.2	2.0	2.0	2.0	2.1	2.0	2.5	2.0	2.1	2.0	2.6	2.6	2.6	2.5	2.5	2.5	2.4	2.4	2.3	2.3	2.3	2.3	2.3	2.3	2.0	2.0	2.0
			With DOL Starting	Starting	Current	to Rated	Current Ratio	3.0	4.0	4.0	4.0	4.5	5.0	5.5	6.0	5.5	5.5	6.0	5.5	5.5	6.0	7.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
) 355L	(sno						1/2L	67.0	68.5	72.3	74.0	75.0	79.8	81.5	82.0	85.2	86.7	87.0	87.2	88.3	88.8	88.7	91.0	91.2	91.0	92.5	92.5	93.3	93.0	92.8	92.8	93.0	93.3	93.5	93.4
e size 80 to	: 50 °C : S1(Continuous)			% Efficiency			3/4L	69.0	72.9	75.9	78.1	79.6	81.8	83.0	84.5	87.2	88.0	88.7	89.7	90.4	90.9	91.2	92.2	92.7	93.1	93.7	93.9	94.3	94.4	94.3	94.4	94.6	94.6	94.7	94.7
ors - Fram	Ambient: : Duty :			%			н	69.0	72.9	75.9	78.1	79.8	81.8	84.3	86.0	87.2	88.0	88.7	89.7	90.4	90.9	91.7	92.2	92.7	93.1	93.7	94.0	94.3	94.4	94.6	94.7	94.8	94.9	95.0	95.0
TEFC 3 Phase Squirrel Cage Induction Motors - Frame size 80 to 355L	4 0	5-Pole)					1/2L	0.48	0.48	0.50	0.50	0.52	0.58	0.57	0.60	0.64	0.64	0.66	0.62	0.69	0.69	0.76	0.82	0.70	0.73	0.75	0.72	0.73	0.71	0.73	0.70	0.73	0.65	0.7	0.7
l Cage Indi		1000 rpm (6-Pole)	d output	Power Factor			3/4L	0.60	0.62	0.61	0.61	0.60	0.65	0.65	0.68	0.74	0.74	0.77	0.75	0.77	0.77	0.84	0.85	0.80	0.83	0.82	0.81	0.82	0.80	0.82	0.80	0.82	0.77	0.80	0.80
ase Squirre	0% % 10%		teristics at Rate	PC			н	0.70	0.71	0.72	0.72	0.72	0.75	0.76	0.78	0.80	0.80	0.80	0.80	0.82	0.82	0.86	0.88	0.83	0.85	0.85	0.84	0.85	0.84	0.85	0.83	0.85	0.82	0.84	0.84
TEFC 3 Ph	Voltage : 415V+/-10% Frequency : 50Hz+/-5% Combined Variation : +/-10%		Operating Characteristics at Rated output	Rated	Torque		Kg.m	0.396	0.59	0.79	1.15	1.56	2.28	3.75	5.58	7.61	9.44	11.1	15.1	18.5	22.0	30.0	36.8	44.7	54.7	74.1	88.8	108.4	123.2	130.0	147.8	158.0	177.0	196.7	246
	Voltage Frequency Combined Vá		0	Current			Amps.	1.07	1.48	1.91	2.72	3.63	4.99	8.00	11.4	15.0	18.4	21.6	29.1	34.7	41.1	52.9	63.4	81.4	96.7	131	159	191	219	228	265	276	322	349	436
	> E O			Rated C	Speed		RPM	910	915	925	930	935	940	960	960	960	960	965	965	975	975	975	980	980	980	985	987	988	988	988	988	988	066	066	066
			Tvne	Ref.			B3 Construction	2H080613	2H080633	2H09S633	2H09L653	2H10L633	2H11M653	2H13S6G3	2H13M6T3	2H16M633	2H16L663	2H16L673	2H18L633	2H20L633	2H20L653	2H22M643	2H25M633	2H28S613	2H28M633	2H31S613	2H31M633	2H31M653	2H31L6A3	2H31L673	2H31L6B3	2H31L693	2H35L6A3	2H35L613	2H35L633
			Frame	size			IEC		80		- 106		112M	132S 2	132M 2	160M	160L	160L					-	280S	_			F	315L	315L	315L	315L			355L
			ut				ЧН	0.5	0.75	1.0	1.5	2.0	3.0	5.0	7.5	10	12.5	15	20	25	30	40	50	60	75	100	120	150	170	180	200	215	240	270	335
			Rated Output				κw	0.37	0.55	0.75	1.1	1.5	2.2	3.7	5.5	7.5	9.3	11	15	18.5	22	30	37	45	55	75	06	110	125	132	150	160	180	200	250

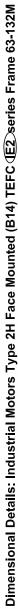
Note : All performance values are subject to tolerance as per IS/IEC 60034-1 Efficiency measurements are without seals.


Dimensional Drawing: Industrial Motors Type 2H Foot Mounted (B3) TEFC (IE2) series Frame 63-355L

	L	Pole
5	Г	- d5
32		_
le 63		GA*
ran	-SHAFT	* * L
ŝs		ш
seria		DDA E F
E)	К	S2
П С	AL B(AG
3) I	RMIN	σ
<u>e</u>	Ē	>
nted	Г	AC
Mou		GA
ootl		U L
Dimensional Details: Industrial Motors Type 2H Foot Mounted (B3) TEFC (IE2) series Frame 63-355L		L LC CA AC V 9 AG 22 NDA E
Type		P
tors	GENERAL	무
Mo	Ш Ш	AHC
iria		HA
lust		AB BB AA BA BA1HA
n		BA
s		A
)eta		BB
al	L	AB
ou	Γ	*⊻ *⊤
ens		<u>т</u>
<u>j</u>	- 9NIX	B1* C
	Ϋ́	<u>ه</u> ر ا

$ \frac{1}{12} = \frac{1}{12} + \frac{1}{12}$																																				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Ц	CA	1	I		152	152	146	172	208		208	60	3	233	220	221		262	281	I	281			I	1	Ι									35-3-2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		С	1	1	1	408	433	469	502	597	1	635	1	1	815	802	841		920	026	I	051	1	1		1										T-A-63
ALT TERMINAL BOX ALT TERMINAL BOX AD L LC CA V q SLAT SHAT A D L LC CA V q SLAT SHAT B - 236 241 75 124 109 104 0.2.5. D.A L C A C P P P P P P P P 206 211 20 314 124 30 11 23 8 11 13 21 24 55 MI0 24 25 M10 24 24 24 56 M10 24 24 24 24 56 M10 24	ABL	_	1	1					419	861		_		-	-		'37				1		1	1		1	1									CA
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Ц	ole	1						_	4		_									1		· 1				1	-								
RAL TERMINAL 7AL AD L LC CA V 9 AC 9 206 241 75 124 149 104 40 6 206 241 75 124 149 104 40 7 - 205 324 94 157 186 112 40 7 - 267 324 94 157 165 55 55 7 - 366 448 125 199 155 56 56 56 56 56 56 56 56 56 56 56 56 56 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 57 56 57 57 57 57 57 57 57 57 57 57 57		۵.	'	'	Ľ	2	2	N			'		' (°	1	N				-		'		1	·		'	<u>'</u>	-					٦		2 D	cified.
RAL TERMINAL 7AL AD L LC CA V 9 AC 9 206 241 75 124 149 104 40 6 206 241 75 124 149 104 40 7 - 205 324 94 157 186 112 40 7 - 267 324 94 157 165 55 55 7 - 366 448 125 199 155 56 56 56 56 56 56 56 56 56 56 56 56 56 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 57 56 57 57 57 57 57 57 57 57 57 57 57	Ļ	d5	Μ4	M5	M6	0V0	0M	M10	M10		M12			M16			M16	000	24		M20		M20		M20		000		M24		ve					e spe
RAL TERMINAL 7AL AD L LC CA V 9 AC 9 206 241 75 124 149 104 40 6 206 241 75 124 149 104 40 7 - 205 324 94 157 186 112 40 7 - 267 324 94 157 165 55 55 7 - 366 448 125 199 155 56 56 56 56 56 56 56 56 56 56 56 56 56 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 57 56 57 57 57 57 57 57 57 57 57 57 57			18		-									105				1001	2	130		130		_	_	130				"	vill ha					herwis
RAL TERMINAL 7AL AD L LC CA V 9 AC 9 206 241 75 124 149 104 40 6 206 241 75 124 149 104 40 7 - 205 324 94 157 186 112 40 7 - 267 324 94 157 165 55 55 7 - 366 448 125 199 155 56 56 56 56 56 56 56 56 56 56 56 56 56 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 57 56 57 57 57 57 57 57 57 57 57 57 57	 -	gA*	12.5	16	21.5	70	7	31	31	:	41						01.5								69 79.5				79.5 100	mark	60M	A" as			5	ess ot
RAL TERMINAL 7AL AD L LC CA V 9 AC 9 206 241 75 124 149 104 40 6 206 241 75 124 149 104 40 7 - 205 324 94 157 186 112 40 7 - 267 324 94 157 165 55 55 7 - 366 448 125 199 155 56 56 56 56 56 56 56 56 56 56 56 56 56 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 57 56 57 57 57 57 57 57 57 57 57 57 57	SHAF	**¥		5		0	0			:	10							16	2		16	18	18	¢ 200		18		_		al Re	- E	Š Š			I I	un m
RAL TERMINAL 7AL AD L LC CA V 9 AC 9 206 241 75 124 149 104 40 6 206 241 75 124 149 104 40 7 - 205 324 94 157 186 112 40 7 - 267 324 94 157 165 55 55 7 - 366 448 125 199 155 56 56 56 56 56 56 56 56 56 56 56 56 56 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 57 56 57 57 57 57 57 57 57 57 57 57 57		ш¥	23	30	40	0	2	60	60	:	80			110			110	110	2	140	110	140	140	140	140	140	170	140 170	140 170	Spec	W/4F	""	2		3	ēin m
RAL TERMINAL 7AL AD L LC CA V 9 AC 9 206 241 75 124 149 104 40 6 206 241 75 124 149 104 40 7 - 205 324 94 157 186 112 40 7 - 267 324 94 157 165 55 55 7 - 366 448 125 199 155 56 56 56 56 56 56 56 56 56 56 56 56 56 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 57 56 57 57 57 57 57 57 57 57 57 57 57	Ц	* 0,DA	7	14	19	č	47	28	28		38																				& 11F	'L' su	5	0 4 L		ions ar
RAL TERMINAL 7AL AD L LC CA V 9 AC 9 206 241 75 124 149 104 40 6 206 241 75 124 149 104 40 7 - 205 324 94 157 186 112 40 7 - 267 324 94 157 165 55 55 7 - 366 448 125 199 155 56 56 56 56 56 56 56 56 56 56 56 56 56 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 57 56 57 57 57 57 57 57 57 57 57 57 57	Ţ	S2 S.C.	/4"	/4"	.[4"		ţ	1"	1"	:	:			ţ.			1/2"	".	1		تم ات				 			1/2"	3		(W/2P	nensio		20		limensi
RAL L LC CA AC 9 206 241 75 124 1 205 241 75 124 1 205 241 75 124 1 203 374 118 174 1 302 374 118 174 1 - 302 374 118 174 2 - 366 448 125 192 2 - 366 448 125 192 2 - 388 471 141 220 2 - 388 590 163 316 6 605 741 203 316 6 585 721 183 316 6 605 741 203 324 9 337 837 966 251 489 5 - 1010 11605 268 261 6 933 1334 489 454 6 1137 1293 240 610 1 1137 1293 240 610	L BO)										2			36			10 1	10	2		73	_	05	:	05			2	05		15	din Per	=		J.T.	AIIC
RAL L LC CA AC 9 206 241 75 124 1 205 241 75 124 1 205 241 75 124 1 203 374 118 174 1 302 374 118 174 1 - 302 374 118 174 2 - 366 448 125 192 2 - 366 448 125 192 2 - 388 471 141 220 2 - 388 590 163 316 6 605 741 203 316 6 585 721 183 316 6 605 741 203 324 9 337 837 966 251 489 5 - 1010 11605 268 261 6 933 1334 489 454 6 1137 1293 240 610 1 1137 1293 240 610	MINA					—		_				2	23	<u>`</u>	45		-			2.5	15 2	45				86										
RAL L LC CA AC 9 206 241 75 124 1 205 241 75 124 1 205 241 75 124 1 203 374 118 174 1 302 374 118 174 1 - 302 374 118 174 2 - 366 448 125 192 2 - 366 448 125 192 2 - 388 471 141 220 2 - 388 590 163 316 6 605 741 203 316 6 585 721 183 316 6 605 741 203 324 9 337 837 966 251 489 5 - 1010 11605 268 261 6 933 1334 489 454 6 1137 1293 240 610 1 1137 1293 240 610	TER											2	с С		က			۰ ۲	> 	43	4	4				n										
RAL 9 AD L LC CA 9 206 241 75 6 233 278 83 7 - 267 324 94 75 -366 448 125 2 388 471 141 2 - 388 471 141 450 552 163 8 478 590 163 605 741 203 605 741 203 605 741 203 605 717 838 218 2265 679 990 217 8 226 679 990 2218 6 772 897 239 8 218 337 6 - 1010 1160 271 1137 1293 240 1137 1293 240 1167 1353 240 1162 1458 454 1281 1682 458 1281 1682 458 1381 1682 4588 1381 1688 45888 1381 1688 458888 1381 1688 458888 1381 1688 45888 1381 1688 45																-		- 10	<u>+</u>		50															
												2	20		ŝ					10		5													0	/ N9
											-							-			-	-	_	_		<u> </u>) ب ب	t : h9
		LC					39		47,	552		_	_					_		96(95	66									L.]	ve bol	way ti
		_	206	234	267	302	327	366	388	450	488	100	605	8	629	679	717	795	772	827	837	842	983	914	1010	1137	1167	1302 1332	1461 1491		cificatic	: 1231	3 2048 3 254(iont iort	/ key
		AD			1	1		-	ı	1				226		100	202	312	012		337		I								Spee	<u>0</u>	0) 0)) With	l Key
A* B* B1 C H* K* AB BA BA BA BA BA BA HA HC 100 80	VERA	ЯD	179	195	214		230	257	282		338			366		3	4.1Z	162	101		509		665		725		830		939		0	0.950			\sim	U
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	- GEN	Ч								000	202										450		495		552		620					5 75 81			DE shê	
A* B* B1* C H* A BA BA 100 80 - 40 63 7 126 100 28 30 1100 80 - 40 63 7 126 100 28 30 1110 90 - 56 90 10 150 31 35 1120 - 50 10 12 190 174 47 36 1140 - 50 10 12 190 174 47 36 126 90 10 12 190 174 47 36 127 128 132 12 256 50 174 47 36 254 - 121 180 15 53 58 56 254 279 121 128 <td></td> <td>ΗA</td> <td></td> <td></td> <td>-</td> <td></td> <td>6</td> <td>٥Z</td> <td>ى د</td> <td>70</td> <td></td> <td></td> <td></td> <td>42</td> <td></td> <td>42</td> <td></td> <td>45</td> <td></td> <td>45</td> <td>Г</td> <td>oleral</td> <td>3,42,4</td> <td></td> <td></td> <td>alto</td> <td></td>		ΗA			-											6	٥Z	ى د	70				42		42		45		45	Г	oleral	3,42,4			alto	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		BA1																							149	~	-				ŀ		1		entice	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		ΒA	30	30	35	37 E	<u>,</u>		36	50	ŭ	5						05	00		85		115		110	4 7 7	<u>-</u>								p ug	2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								43.5															100		100	5	3	120	110		lsion	A	F,FA ering)		iensi	277 0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			100	110	124			174	174			× ۱٥	250		294			255		336		8			490	510			770	4	Dime	D,D	A,GC,		ft d <u>in</u>	oer IX
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Ц		126	135	150	160		190	220		256			310			044	000	000		436		506		540		675	050	710	ШШ			d5 d5		shat	lasp
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Ы	*×	7	7		6	2	12	12		12					Ļ	5	10	13		19		24		24		аc	2	28	IAE	ion		2		with :	guing
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		*±	63	7	80	8	۶ ۶	100	112	0	132			160			Uð I	000	201		225		250		280		31E	2	355		cifica		123		ded	nom
A* B* B1* A* B* B1* A* B* B1* A* B* B1* 100 80 112 100 80 1125 100 1120 1140 1190 140 216 140 216 140 216 219 218 305 254 279 279 356 311 356 311 406 349 508 508 508 508 508 508 508 508 508	ģ		40	45	50	U L	R	63	70	:	68			108			.71	133	2		149		168		190		01G	2	254		Spe		<u>s</u>		prov	۹۸ ۱
A* B* 100 80 100 80 125 100 80 125 100 80 125 100 80 125 100 140 125 100 140 125 120 216 140 125 215 210 226 211 225 210 226 211 225 210 226 211 225 226 211 225 226 211 225 226 211 225 226 211 225 226 211 225 226 211 225 226 211 225 226 211 225 226 211 225 211 2	IXI	в1*		Ι	Ι			-																	419	157	5					80		80	be i be	x v v
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Ī	* <u>m</u>	80	6	100	100	125	140	140	140	178	0/1	210	i	254	241	279	305	202	286	311	;	349		368	106	2024	508	630		e	PTO 2	, 10Ø	,24,28	n car	ň
	Ц	*∢	100	112	125	110		160	190	0				_				318	2				406		457		508		610		oleran			19	insio	20,B/
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		e	4				8	8		æ			a				8					8						0	8			-0.5	+0.360 +0.430	0.520	ftexte	e tor t
Pole 2,4,8,6 6,8,8 7,4,6,8 8,8 6,8,8 6,8,8 7,4,6,8 8,8 6,8,8 7,4,6,8 8,8 7,2,6,8 8,8 7,2,6,8 8,8 7,2,6,8 8,8 7,2,6,8 8,8 7,2,6,8 8,8 7,2,6,8 8,8 7,2,6,8 8,8 7,2,6,8 8,8 7,2,6,8,8 7,2,6,8,8 7,2,6,8,8 7,4,6,8,8,8 7,4,6,8,8,8,8,8,8,8,8		Pol	2 &	2,4 (2,4,	6&		6&	6&		»		16,2		9 8	2,6	6&	2	6&	6 &	2	6 &	~	4,6	4,6 5	2	4,6	4.6	4,6		Ę	<u> </u>	+ +	+	shaf	Itable
IEC IEC 63 63 63 71 71 2 90S 90S 90S 90S 90S 90S 90S 100L 112M 1 132N 1 160M 2 200L 200L 200L 2 315L 2 A H H H Also sutitic 2		size	33	-	,	SC	Ъ) OL	2M	32S	MC		- Moč	-	OUL	MO	30L		J L	:5S	E N N	MC	- MC		-W/S	N/O	1/0	151	22F		nensio	Ξ	×		ouble.	so su
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Ш. Ц			®	6	Ó	10	1	10		-	16			18	15	70	Ň	22	ç	3	25		280	215	<u>, 1</u>	<u>.</u>	36							Z D

Dimensional Drawing: Industrial Motors Type 2H Flange Mounted (B5) TEFC (IE2) series Frame 63-355L



Frame 63-355L
(E2) series
I (B5) TEFC
nge Mounteo
ype 2H Flar
al Motors T
Details: Industrial Motors
imensional Deta
Dim

-					\$	e	6		2		ю				10	N	-		0	ю		-	.	, 1		Τ.	Т			-		1				Г	<u>s</u>	ied.				
ю́ ш					3 408	433	7 469	9 502	597	1	635		771		815	802	841		920	7 1026		1051								_			ą	0		1	ance	nerwise specified				
TABLE					4 336	4 361	4 387	419	4 498		532		4 635		4 679	698	737		795	877		902								_			vill hav	ated in		.	tolerances	nerwise				
F	Pole				2 & .	2 & 4	2 & 4	4	28,		4	Ι	2 & 4		2 & 4	4	4		4	4		4						I					5kW/2P & 11kW/4P in 160M will have	dimensions "L" & "LC" as Indicated in			for t	less oth				
	d5 M6 M8 M10 M10					5 6 10 10				<u></u>			M12	1			M16			ç	0		MZ0		M20		6	MZ0	M20	Т		M20		77	4		Special Remarks & 11kW/4P in 160	- <u>"</u> "		.	◄	un mm
	d5	Σ	Σ	Σ	2	≥	M10	M10	ž								9 M				Τ					+	Т	Т		M24		10,000	0eciai 11kW//	- 8 - 1	; 1		TABLE	are in				
	- =	18	25	35	45	4 2	55	55	02	2			105			007	001		100	130	100	130	130	130	130	130		160	160	130	160	Ċ	ଧୁ <mark>ଜୁ</mark>	sions'	<u>م</u>			ensions				
SHAFT	eA* GC	12.5	16	21.5	70	7	31	31	41	-			45			ı i	0.1.0	i	69	64	59	64	64	69	69	6.67		60 60	82	79.5	100		15kW/	dimen	table "B"		*Refer	All Dimensions are in mm unless otherwise specified.				
HS I	* * ≚ [⊻] ¥	4	5	9	c	0	8	8	10	2			12				14		16	18	16	18	18	18	18	2U 18	2 8	77	22	20	25					ΙL	*					
	шΨ	23	30	40	Ĺ	00	60	60	В О	8			110				0		110	140	110	140	140	140	140	140		0/1	140	140	170							onwar				
	* D,DA	1	14	19	ā	74	28	28	38	3			42			q	6 0	ł	çç	60	55	60	60	65	65 75	ری 65	8	Do r		75	95							frame				
Г×	S2 B.S.C	3/4"	3/4"	3/4" 3/4" 1" 1"			.			= 				÷			"0/1 1	7	ē	N		2"			7	2"		۳.		2 1/2"		"							Key / key way fit : h9 / N9 8 Nos. Fixing Holes from 2255/M frame onwards			
LTERMINAL BOX	AG	40	40	40	c u	70	56	56	ŝ	3			63				76	1	7/1		172		205	cu2	205						305					e bolt		/ N9 om 22				
ERMIN	σ	109	127	112	139	153	152	157	196	1	GLZ	323	050	345	2	352	371		080	432.5	415	445		705	360	386		4.10	300 416		_					(1) Without Eve bolt	•	t : h9 . oles fr				
Ë	>	86	95	105	100		125	137	131	201			186	2		_	912		243		273			320	358			413			495					Witho		way fi ing Ho				
					6	Э		ı	1				206	2		000	232		707		284	1					-		-		1					Ē)	/ key s. Fix				
	С	260	305	324	374	399	448	471	552		590	741	721	765	201	799	838	920	897	996	956	991	1134	1065	1160	1203		1353	1518	1622	1682		Specification		1231	S 2048	0.402 : 6	Key / key way fit : h9 / N9 8 Nos. Fixing Holes from 2				
		225	261	267	302	327	366	388	450		488	605	585	620	070	679	717	795	772	827	837	842	983	914	1010	1137	1011	/01.1	1332	1461	1491		Specit	Specificati IS : 1231		++	2					
GENERAL -	AC	124	140	157	171	t -	195	220	206 260 -				316	2		354	354	00	1955		450		480	402	544			610			690			28Ø	80 95 <i>0</i>			D.E.sh				
- GEN	AD	116	124	134	140	2	157	170					226			L	G97		312		337		Ļ	415	445			515			584	 [Tolerance	11,14,19,24,28Ø	k6 38,42,48Ø m6 55.60.65.75.80.95Ø			ical to				
	ΓP	6	6	10	ç	2	1	5	ç	N			ст С	2			13	Ļ	cl		16			18	18			22			25		10	J6 11,1,	k6 38,4. n6 55.6			n ident				
	F	e	3.5	3.5	u c	0.0 0	4	4	•	4			LC.	,		ι	с С	ı	ი		S		L	ç	5			9			9		\vdash			E,FA	16111	nensior				
Г	S	10	10	12	ć	2	15	15	Li T	0			6	2		ç	91		19		19			19	19			24			24	۔ ح		D,DA	n n	GA,GC,F,FA		laft din 253				
	*	23	30	40	E O	2	60	60	Co	8			110	2		011	011		01.1	140	110	140		140	140	140		170	140	140	170	TABLE					2	vith sh r IS 23				
FIXING	*≥	115	130	165	165	3	215	215	200	C07			300	200		000	300		005		400			009	500			600			740	-			23			vided v a as pe				
	*z	95	110	130	120	2021	180	180	000	007				250		250		C L C	750	000	300		350		0 1	450	450			550			680		Specification		IS : 2223			□ Double shaft extension can be provided with shaft □ Also suitable for V1 & V3 mounting as per IS 2253		
		140	160	200	000	2002	250	250	000	000			350	200		i i	350	001	400		450			066	550			660			800		H	450	265	265 265	85	on can & V3 m				
	Pole	4	& 6	& 6	00	8	8	8	8				& 8 8	a	0	8 8	00		8	00		8		& 8	c	o Ø	0	× ×	8	2	8		Tolerance	UPTO 450	OVER 450 UPTO 265	OVER 265	OVER 85	extension V1				
		2 &	2,4 & 6	2,4 & 6	6&8	6&8	6 &	6&8	6 &		9	2	4,6 &	e a	5	2.6 & 8	6 & 8	7	6 & 8 8	6 & 8	7	6 &	2	4,6 &	2	4 0,0	۷ (۲	4,6 & 8	46.8		4,6 & 8		Ĭ		js6 ±0.3		±1.5	shaft e Itable f				
	IEC Fr size	63	71	80	806	90L	100L	112M	132S		132M	MOG		1601	OUL	180M	180L		200L	225S		MG77			280S/M		315S/M		315L		355L		Dimension	z	;	Σ		□ Double shaft extension can be provided with shaft dimension identical to D.E.shaft □ Also suitable for V1 & V3 mounting as per IS 2253				
	Ľ						[-	~		÷	1	-	1	-	~	-		2			N	Č	Ň	28		31		ო		ო		ц									

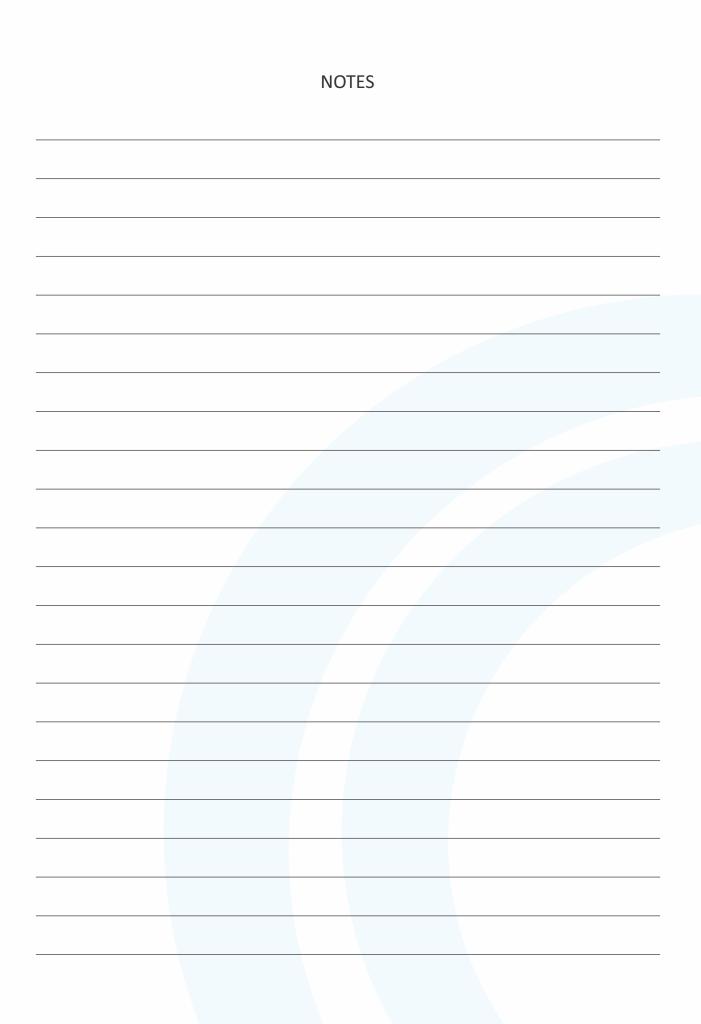
AG S2-CONDUIT	ENLARGEMENT OF CIRCLE B GCC LA	CAT-C-6313-4-1	
	Pole L Pole L — — — — — — — — — — — — 2 8.4 387 469 4 419 28.4 498 28.4 498 28.4 498 28.4 498 587 469 4 502 28.4 498 58.4 507 — — — — — — 4 502 28.4 507 — — 4 532 635 635	wise specified.	
LC LC LC LC LC LC EARTHING FRAME SIZE 90S TO 132	SHAFT D* E F GA I L L DA E F GA I I L <th co<="" td=""><td>All Dimensions are in mm unless otherwise specified.</td></th>	<td>All Dimensions are in mm unless otherwise specified.</td>	All Dimensions are in mm unless otherwise specified.
Prave size sos to 132M	TERMINAL BOX V 9 AG S.C. Db 86 104 40 3/4" 11 95 102 40 3/4" 14 105 112 40 3/4" 19 109 153 52 3/4" 24 125 152 56 1" 28 137 157 56 1" 28 137 157 56 1" 28 155 56 1" 28 157 56 1" 28 155 11 28 155 123 157 56 1" 28 155 123 155 123 155 123 155 123 155 123 167 123 167 123 163 123 173 173 173 173 173 173 173 173 173 173	All Dir	
	GENERAL T AD AC L LC 9 2.5 116 124 206 241 3 134 157 267 324 3 134 157 267 324 3 140 174 302 374 O 3.5 157 195 366 448 - 3.5 170 220 388 471 - 3.5 170 220 388 471 - 3.5 170 220 388 471 - 4 206 260 488 590 - A 206 261 488 590 - A 6 380 11.14,19.24.2867 -		
2-B.S. CONDUIT 2-B.S. CONDUIT B A HOLES B A 45 45 45 45 45 45 10 EARTHING E	FIXING N M* i S N M* i S 60 75 23 M5X10 60 75 23 M5X10 80 100 40 M6X13 95 115 50 M8X12 110 130 60 M8X12 110 130 60 M12X20 180 215 80 M12X20 Specification Dime Is: 2223 Is: 2223 Is: 2223 GA.GC.		
LC LC EARTHING FRAME SIZE 63 TO	IEC Pole Fr. size 63 2 & 4 63 2 & 4 7 71 2,4 & 6 90 80 2,4 & 6 90 90L 6 & 8 90 112M 6 & 8 100 132S 6 & 8 132 0 132 6 & 8 132M 6 8 132M 6 8 132M 6 8 132 6 & 8 10 N 16 M 1 ±0.3 ±1	for tolerances	
	ENLARGEMENT OF CIRCLE W	*Refer TABLE A	

Special Design Features Offered Electrical

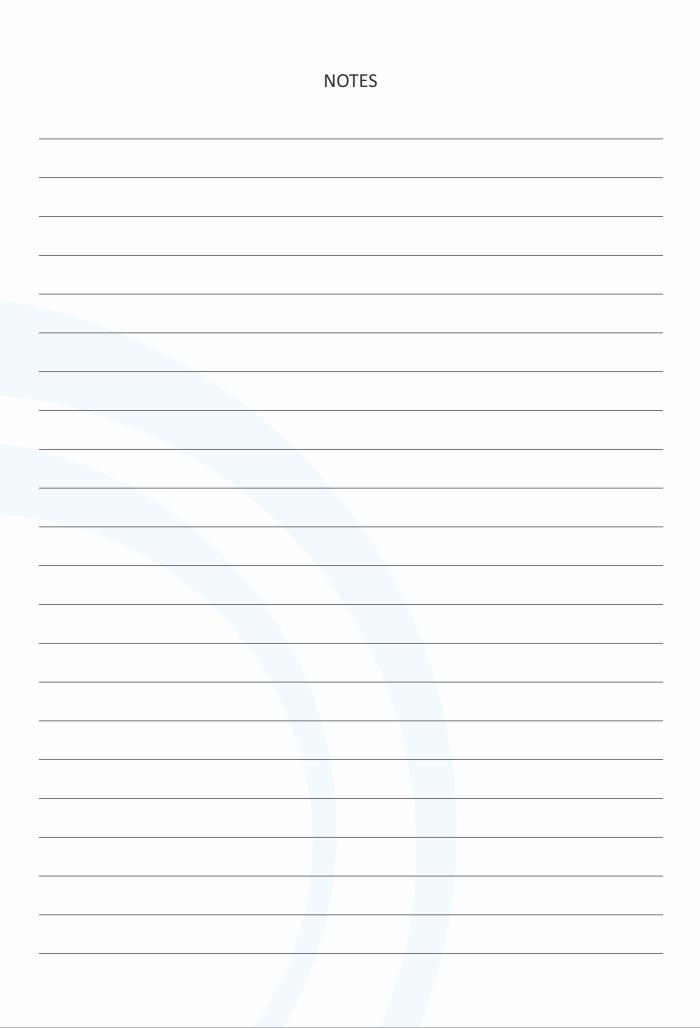
Non standard Voltage	42 TO 700V							
Non standard Frequency	50/ 60 Hz with efficiency							
	class as per IEC 60034-30							
Motor for wide variation	۱*							
Voltage variation	>10%							
Frequency Variation	>5%							
Motors with higher	>50 °C							
ambient temperatures								
Polarities higher than 8	10pole, 12pole etc							
pole								
Dual Voltage motors	In ratio 1:v3. 1:2							
Multi Speed motors	2 / 3 speeds							
Class H Insulation Scheme								
Motors with Thermal	PTC Thermisters,							
protection	Thermostat, RTD, BTD etc.							
Space heaters	90 Frame onwards							
Motors with starting	e.g. <600% inclusive of							
current Limitations	tolerance							
Motors with intermittent duties								
Motors with flying leads								

* motor performance may vary from the catalogue performance. Please ask for data sheet for non standard motor.

Product Range


Motor used in Hazardous Area								
•Flame proof motors-	Frame 80 to 315L (MD)							
Ex'd' (IS/IEC:60079-1)								
 Increased Safety –Ex'e' 	Frame 63 to 355L (ME)							
(IS/IEC 60079-7)								
 Non sparking-Ex'n' 	Frame 63 to 355L (MN)							
(IS/IEC 60079-15)								
Brake Motors	Frame 71 to 132L (MB)							
Slip ring Motors	Frame 100 to 160L (MP)							
Roller table motors	As per Requirement							
Crane Duty Motors	Frame 63 to 355L (MC)							
Railway motors	Frame 180M TO 225M							
(Auxiliary drives)								
Cane unloader motors	Frame 160L TO 225M							
Marine duty motors	Frame 63 to 355L							

Mechanical


Special Mounting	Non Standard mounting dimensions							
Cable entries	Metric equivalent							
Non Standards shaft materials	e.g. EN 24							
Non Standards shaft extension dimension								
Non standards cable entries								
Cable spreader box	180 Frame onwards							
Motors with cable glands	Single/Double compression							
Motors with separate T.Box for space heater, thermister	200L frame and above							
Low vibration motors	Reduced or special class as							
	per IS : 12075 or vibration							
	grade B as per IEC 60037-14							
Non standards paint type	Non standards paint type							
Paint shade	e.g. Shade no. 632 RAL							
	7030 etc							
Forced cooling								
arrangement (IC416)	(132 frame onwards)							
Surface cooled motors (IC410)								
Motors for brake fitment								
Motors with clean flow cowl arrangement								
Motors with C.I Fan up to 225 Frame								
56 Frame motors in B5 AND B14 Mounting construction								

NORTH

DELHI

1st Floor, 7 B Rajindra ParkPusa Road, New Delhi 110 060 T: +91 11 25816931/32/33/35/38 F: +91 11 25816940 Email: bbldelhi@bharatbijlee.com

LUDHIANA

SCO-146 3rd Floor Above ICCI Bank Feroz Gandhi Market Ludhiana 141 001 T: +91 161 2775 692/93 Email: bblludhiana@bharatbijlee.com

CHANDIGARH

SCO No.333-34 1st Floor Sector 35B Chandigarh.160 022 T: +91 172 2600532/35 F: +91 172 2600531 Email: bblchandigarh@bharatbijlee.com

JAIPUR

207 1ST Floor Business Plaza Near Ganapati Plaza B-8 Motilal Avenue Jaipur 302 001 T: +91 141 237 2842 Email: bbljaipur@bharatbijlee.com

INDORE

M-78 Trade Centre 18 South Tukoganj Indore 452 001 T: +91 731 2524474/2514486 F: +91 731 2527 505 Email: bblindore@bharatbijlee.com

EAST

KOLKATA

Flat No.8 Mansarawer 2nd Floor 3B Camac Street Kolkata 700 016 T: +91 33 2217 2382/83 F: +91 33 2217 2467 Email: bblcalcutta@bharatbijlee.com

REGISTERED OFFICE

Electric Mansion 6th Floor Appasaheb Marathe Marg Prabhadevi Mumbai 400 025 T: +91 22 2430 6237/6375 F: +91 22 2437 0624

MARKETING OFFICE & WORKS

No. 2 MIDC Thane Belapur Road Airoli Navi Mumbai 400 0708 T: 91 22 2763 7200/7400 F: +91 22 2763 7430 Email: motors@bharatbijlee.com

WEST MUMBAI

501-502 5th Floor Swastik Chambers Sion Trombay Road Chembur Mumbai 400 071 T: +91 22 6145 7333/61457334 F: +91 22 25228767 Email: bblho@bharatbijlee.com

PUNE

Flat No 1 "Sai Sankalp" Ground Floor Sankalp Hsg Soc Ltd Plot no 14 Cts No 380 Opp Jog Hospital Pand Road Kothrud Pune - 411 038 T: +91 20 2432 1267 /2432 4831/2432 0232 F: +91 20 2433 9210 Email: bblpune@bharatbijlee.com

AHMEDABAD

202 Arth Complex 8-Rashmi Society Behind A K Patel House Mithakali Six Roads Ahmedabad 380 009 T:+91 79 2642 4187/2642 2455 F: +91 79 2656 3581 Email: bblahmedabad@bharatbijlee.com

NAGPUR

Plot No v-71 Neelam Appartment Narendra Nagar Nagpur 440 015 Mobile-09665093639 Email: ajay.parashar@bharatbijlee.com

SOUTH

BANGALORE

204-207 Ramanashree Chambers 2nd Flr 37 Lady Curzon Road Bangalore 560 001 T:+91 80 2559 2646 /2137 /2681 F:+91 8025592823 Email:motorbangalore@bharatbijlee.com

CHENNAI

No 12 Rishikesh No 75 (Old No.38) G N Chetty Rd T Nagar Chennai 600 017 T:+91 44 2815 4793 / 94 F:+91 44 2815 4794. Email: bblchennai@bharatbijlee.com

SECUNDERABAD

Krishna Mansion 2nd Floor Adjacent to Bible House 134 Rashtrapati Road Secunderabad 500 003 T: +91 40 2753 4512 F: +91 40 2753 1791 Email: bblsecbad@bharatbijlee.com

COIMBATORE

112A Chenny's Chamber 1st Floor Dr. Nanjappa Road Coimbatore 641 018 T: +91 422 326 8881 Email: bblcoimbatore@bharatbijlee.com

Motors | Transformers | Drives | Elevator Systems | Projects