IE2 Motor Series
年

Introduction

Global warming is a reality and world over people are working towards reduction in carbon foot print.
Electric motor applications, in Indian industry, consume about seventy percent of the generated electrical energy. Improving efficiency of the motor is therefore a major concern in energy-efficiency efforts.

Electric motors with improved efficiency, in combination with frequency converters can save about 7% of the total worldwide electrical energy. Roughly one quarter to one third of these savings come from the improved efficiency of the motor.

A need was felt amongst users, consultants and manufacturers in India to revise existing BIS standard IS 12615:2004 to harmonize with the international standards. This will lead us to be in line with international code of standards and practices. This will also result in having uniform test procedures to facilitate the end user to compare the performance and energy efficiency of motors.

Motors from 0.37 kW to 375 kW make up the vast majority (approximately 90%) of installed motor population and are covered by the standard IS 12615:2011. This fulfills the need of the manufacturers to design motor for a global market. This standard defines four efficiency classes for nominal frequency 50 Hz .

Salient features of BIS standard IS 12615:2011 (second revision)
This standard is primarily based on IEC 60034-30:2008 issued by the International Electrotechnical Commission except that additional performance parameters other than efficiency values have also been included.
The efficiency levels in IS 12615:2011 are based on test methods specified in IS 15999 (Part 2/sec 1):2011 / IEC 60034-2-1:2007. The standard specifies methods used to determine losses and efficiency, with the objective to calculate efficiency values more accurately.

New IE efficiency classes are as given below

Efficiency Class	Description	
IE1	Standard efficiency	Comparable to eff2
IE2	High efficiency	Comparable to eff1
IE3	Premium	Premium
IE4	Super premium	Super premium

As per the standard, efficiency class of IE4 is under consideration and would be incorporated later. The standard IS 12615:2011 covers low voltage, AC three phase squirrel cage, single speed induction motors for

- Rated voltage <= 1000V
- Rated frequency 50 Hz
- Rated output between 0.37 kW to 375 kW
- 2P, 4P \& 6P
- Rated on the basis of continuous duty (S1) or intermittent periodic duty (S3) with 80% or higher cyclic duration factor
- Capable of operating direct on line
- Rated for ambient temperature of 40 deg centigrade \& altitude not exceeding 1000 m
- Degree of protection IP44 or superior
- Method of cooling IC 411
- Fixing dimensions as per IS 1231 \& IS 2223
- Determination of total losses with PLL determination from residual losses

This standard does not cover

- 8P motors
- Pole changing motors (multispeed motors)
- Motors made exclusively for converter duty application
- Motors completely integrated into the machine. (for example, pumps, compressors that cannot be tested separately from the machine)
- Crane \& hoist duty motors

Highlights

- Efficiency values of different manufacturers are comparable only if they are measured by the same method as per IS 15999 (Part 2/sec 1):2011 / IEC 60034-2-1:2007.
- IE Class efficiencies are subject to tolerance as per IEC 60034-1
- For conditions of limitations on grid supply (e.g. limiting starting current, high tolerances of voltage and/or frequency), it may not be possible to achieve the same IE efficiency class.
- Energy efficient cage-induction motors are typically built with more active material to achieve higher efficiency and hence the starting performance of these motors differ somewhat from motors with a lower efficiency. The locked rotor current increases approximately by 10 to 15 percent for increase in each level of efficiency for the same output power. For replacing existing motors, this should be checked by the user with manufacturer for proper sizing of the protective devices.
- Old efficiency levels were Eff2 and Eff1 (as per CEMEP). For calculation of these efficiencies, fixed stray load losses (0.5\% of motor output) were assumed. Now IS 12615:2011 refers to IS 15999 (Part 2/sec 1):2011 / IEC 60034-2-1:2007 for calculation of efficiency. This calculation is based on the new methods of stray load loss measurement specified in the standard. The effect is in the reduction of efficiency as compared to the earlier values.

Energy Efficient Induction Motors

(Three phase squirrel cage induction motors)
Bharat Bijlee has introduced a complete range of IE2 High efficiency motors

Product Range

Type	Frame Size	kW range
2H - IE2 High efficiency	71 TO 355L	0.37 TO 355*

Standards

All motors comply with following Indian \& International standards

National/International Standards

IS:325	Three Phase Induction motors specifications.
IS/IEC 60034-1	Rotating electric machines: Part 1 Rating and Performance
IS:900	 maintenance of induction motors.
IS:1231	Dimensions of foot mounted A.C Induction motors
IS:2223	Dimensions of Flange mounted A.CInduction motors
IS 15999 part 2 section 1 /IEC 60034-2-1	Rotating Electrical Machines - Standard Methods for determining lossesand efficiency from tests
IS/IEC 60034-5	Degree of protection provided by the integral design of Rotating Electrical Machines (IP code) : classification
IS:6362/ IEC 60034-6	Designation of methods of cooling for Rotating Electrical Machines
IS: 12065/ IEC 60034-14	Permissible Limits of noise level for Rotating Electrical Machines
IS: 12075	Mechanical Vibration of Rotating Electrical Machines
IS: 12615:2011	Energy Efficient Induction Motors Three phase Squirrel Cage.
IEC 60072	Dimension \& Output rating of Rotating Electrical machines.

*Note : Motors above 355kW \& up to 1250 kW are available in frame size $355,400 \& 450$ with double ventilated cooling system. Please contact our Sales.

CE MARK

All motors have CE mark on the nameplate
ELECTRICAL FEATURES
Standard Operating condition
Supply Conditions (Voltage \& Frequency)
Voltage : $415 \mathrm{~V} \pm 10 \%$
Frequncy : $\quad 50 \mathrm{~Hz} \pm 5 \%$

Combined variation : $\pm 10 \%$

Ambient

Motors are designed for ambient temperature of $50^{\circ} \mathrm{C}$

Altitude

Motors are designed for an altitude up to 1000 m above mean sea level.

Re-rating factors

The re-rating applicable under different conditions of supply voltage, frequency, ambient \& altitude are obtained by multiplying following factors.

Variation in supply Voltage \& Frequency

Voltage Variation \%	Frequency Variation \%	Combined Frequency Variation \%	Permissible output as \% of rated value
± 10	± 5	± 10	100
± 12.5	± 5	± 12.5	95
± 15	± 5	± 15	90

Variation in Ambient Temperature \& Altitude

Amb. Temp. ${ }^{\circ} \mathrm{C}$	Permissible output as \% of rated value
<30	107
$30-45$	103
50	100
55	96
60	92

Altitude above sea level m	Permissible output as $\%$ of rated value
1000	100
1500	97
2000	94
2500	90
3000	86
3500	82
4000	77

Method of starting

Our motors are suitable for following method of starting

kW rating	Method of starting	No. of leads
Upto \& including 1.5 kW	$\begin{aligned} & \hline \text { DOL } \\ & 415 \mathrm{~V} \text { - Star } \\ & 240 \mathrm{~V} \text { - Delta } \end{aligned}$	6
Above 1.5 kW	DOL or Star / Delta	6

All Bharat Bijlee motors are suitable for inverter duty application. (Refer page 5)

Starting Time and Duty Cycle

Motors are designed for continuous (S1) Duty. Other type of duty (S2 to S9) can be offered on request. The motors can safely withstand 3 consecutive starts from cold condition \& 2 consecutive starts from hot conditions. In applications where more severe starting conditions are encountered, a special enquiry should be made e.g.

- Drives with high inertia e.g flywheel drives, eccentric presses, large fans etc.
- Drives involving intermittent duty of motors with frequent starts e.g. rolling mills, centrifuges and conveyor motors, etc.

The enquiry should be accompanied with following information.

- GD^{2} and relevant speed of driven equipment
- Duty cycle/sequence of operation/no. starts/hours
- Speed-Torque diagram of driven equipment
- Method of braking (Electrical or Mechanical)

Insulation and Endurance

The Motors are provided with class F insulation scheme with temperature rise limited to class B. These motors can be used either at ambient temperature of $55^{\circ} \mathrm{C}$ or overloaded continuously by 10% (service factor = 1.1). The temperature rise will be still within limits of class F .

The slot insulation consists of Nomex-polyster-Nomex (NPN). All insulation materials used are adequately resistant to the action of microbes and fungi.

Winding \& Insulation for Inverter Duty Motors

- The stators are wound with polysteremide coated with polyamide-imide top coat, (dual coated) wires as per IS 13730 : part 13, grade -II thermal class 200 copper wires.
- Vacuum Pressure Impregnation (VPI) is provided to windings.

Depending on the voltage wave rise time ($\mathrm{dv} / \mathrm{dt}$) and the
maximum peak to peak voltage at the motor terminals, suitable insulation schemes are provided.

On customer's demand, insulated bearings are offered from frame size 132 and onwards on the NDE side of the motor.

Options

Motors with class ' H ' insulation can be offered on request.

Thermal Protection (For Winding \& Bearing)

PTC Thermisters / thermostats. RTD etc. can be embedded in stator winding on request. In case of frame sizes 250 M \& above Bearing Temperature Detectors (BTD) can be supplied on request.

Earthing Terminals

Two earthing terminals are provided on the body and one terminal is provided in the terminal box.

Anti-condensation Method

In order to avoid condensation of water inside the motors, they can be heated up by connecting a voltage 4 to 10% of rated voltage to the motor terminals. Adequate heating is obtained with current equal to $20-25 \%$ of rated motor current. Alternatively any of the methods indicated in IS:900 for heating stator winding could be adopted.
Motors can also be offered with built in space heaters in frame size 90 and above.

MECHANICAL FEATURES

Enclosures: (Material \& Terminal box location)
Motors are offered with following enclosure

Frame Size	Enclosure	Terminals Box Location	
	Materials	Standards	Option Available
$63-80$	Aluminum	TOP	----
90 S-112M	Aluminum	TOP	----
	Cast Iron	RHS	TOP \& LHS
132S \& 132M	Aluminum	TOP	-
132S-225M	Cast Iron	RHS	TOP \& LHS
250M-355L	Cast Iron	TOP	RHS \& LHS

All foot mounted motors are with integral feet construction. All motors up to 280 frame are with integral bearing covers and motors in frame 315 and above are with separate bearing covers.

Cooling

All motors are totally enclosed Fan Cooled (TEFC) The cooling is effected by self driven, bi-directional centrifugal fan protected by fan cover. The Type of cooling is as per IS 6362 / IEC 60034-6. Forced cooing arrangement can be provided for frame 132 S and above.

Table 2

Cooling Type	Cooling Code	
TEFC	IC 411	Standard
TENV	IC 410	On Demand
FORCED COOLED	IC 416	On Demand

Degree Protection

All motors have IP55 degree of protection as per IS/IEC 600345. Higher degree of protection such as IP56, IP66 can be provided on request. All flanged motors are additionally provided with oil tight shaft protection on driving end side.

Bearing \& Terminals Box Details

Frame Size		Bearing nos. C3 Clearance		Terminals Box Type / Location	Terminals		No. \& size of cable entries	Max. Cond. Cross Sec. area mm
		DE	NDE		No.	Size		
	3	$62012 Z$	$62012 Z$	$\begin{gathered} \text { gk030/ } \\ \text { Top } \end{gathered}$	6	M4	1×3/4"	4
	1	6202 2Z	6202 2Z					
	0	$60042 Z$	$60042 Z$					
90S	,90L	6205 2Z	6205 2Z	gk130/Top	6			6
	OOL	$62062 Z$	6205 2Z	gk230/ Top	6		$2 \times 1^{\prime \prime}$	10
	2M	$62062 Z$	$62052 Z$					
132S	32M	$62082 Z$	$62082 Z$	gk330/Top	6	M5		
160M	160L	$63092 Z$	6209 2Z	gk330/RHS				16
180M	,180L	63102 Z	$62102 Z$	$\begin{gathered} \hline \text { gK430/ } \\ \text { RHS } \end{gathered}$	6	M6	$\begin{array}{\|c\|} \hline 2 x \\ 1-1 / 2^{\prime \prime} \\ \hline \end{array}$	50
	OOL	6312	6212	$\begin{aligned} & \hline \text { TB } \\ & 225 / \text { RHS } \end{aligned}$	6	M8	$2 \times 2{ }^{\prime \prime}$	70
225S	, 225	6313	6213					
	OM	6315	6215	TB280/ Top	6	M10		150
280	2 P	6316	6316					
S/M	$\begin{aligned} & 4,6 \\ & \& 8 P \end{aligned}$	6317	6316					
315 S/M				TB315/ Top	6	M12		240
		6319	6319					
315L		6319	6319				$\begin{array}{\|c\|} \hline 2 \times \\ 21 / 2^{\prime \prime} \\ \hline \end{array}$	
355L		6322	6322	TB355/Top	6	M16	2×3 '	300

Note: L10 bearing life is 50,000 hours for directly coupled loads through flexible couplings only

Roller Bearing and Insulated Bearing

Alternatively motors with insulated bearing on NDE side can be offered from frame size 132 S \& above on request at extra price.

Motors can also be offered with cylindrical roller bearing (NU) on DE side for frame sizes 132 S and above at extra price.

Grease

Sealed for life bearing (2Z) are filled with grease Unirex N3-of ESSO. Others are filled with LGMT3 of SKF make. Special high temperature grease can be provided on request.

On line Re-Greasing

On line re-greasing arrangement is provided in frame sizes 225 S and above. For frame size 180M, 180 L and 200L it can be provided on request.

Rotor

Entire range of motors is fitted with dynamically balanced aluminum pressure die cast squirrel cage rotors.

Shaft

All motors are provided with single shaft extension in accordance with IS: 1231. The Shaft material is C40 (EN8) Steel. However any special shaft extension and / or special shaft material e.g. EN24 or stainless steel grades are also provided on request.

Balancing \& Vibration

Rotors are dynamically balanced with a half key in the shaft extension. Vibration grade is 'reduced grade' conforming to IS: 12075. Other grades as per IS 12075 or IEC 60034-14 can be provided on request.

Noise Level

Motors are designed for noise level well below the limits specified in IS: 12065

Paint

All motors are painted with acrylic paint in Blue colour, RAL shade No. 5000. Motors used in corrosive atmosphere are painted with Epoxy base paint. Any other shade or material (e.g. polyurethane paint) can be offered on request.

Packing

Motors up to 132M frame are packed in thermacol / corrugated boxes. Wooden packing boxes are provided for higher frame size. Export worthy packing is also available on request.

Bharat Bijlee IE2 motors suitable to run with VFDs

Bharat Bijlee offers the entire range of motors suitable to run with VFDs.

Motors are suitable for :

- Constant torque application like crane, hoist, reciprocating compressor etc.
- Variable torque application like centrifugal pump, fan, blowers etc.
- Constant power application like metal cutting lathes, wire winding machines etc. and are custom built to suit customer's requirements.

Motors for constant torque application suitable for speed range of 1:10, 1:5, 1:2 etc can be provided. Depending on the speed range, motors can be offered with forced cooling (IC416) or in higher frame sizes 132 and above. Please check with our sales office, for motors to be operated above 1.5 times the synchronous speed.

PWM, IGBT devices operate at very high frequencies (2 kHz to 15 kHz) and have very short rises times leading to high $\mathrm{dv} / \mathrm{dt}$.

Longer cable lengths also contribute to higher voltages at the motors terminals due to standing wave phenomenon. These stress the insulation of the motors. Bharat Bijlee motors are provided with special impregnation system /vacuum pressure impregnation and dual coated winding wire to take care of these stresses. This insulation conforms to the requirements given in IEC 60034-18-41. For voltage higher than 500 V , refer to our sales office.

All the motors are provided with six terminals in the terminal box. Shaft induced voltage occurs due to the use of VFD. This causes flow of currents through bearing which can lead to premature bearing failure. Insulated bearings can be provided in frames from 132 S onwards on request.

In closed loop system operations, speed feedback is obtained through encoder mounted on the shaft of the motors. We provide encoder mounting arrangements on Non Drive End side shaft of the motors on request.
For further details and technical offer, please refer to our Sales office in your area.

Payback Calculations:
Effect of additional stray load losses for efficiency determination as per IS 12615-2011
The new standard follows IS 15999 / IEC 60034-2-1 for arriving at the stray load losses. These losses can vary from 2.5% in small motors to 0.5% in higher ratings up to 1 MW . The earlier standard IS 12615-2004 used for eff1 motors assumed stray losses as 0.5% of output. Hence the efficiency values tested by the earlier standard would be 0.5% to 1.5% higher than the new standard for the same motor.

Example is as given below

Rating 4 Pole	Eff1 specified in IS 12615-2004 (\%)	IE2 specified in IS 12615-2011 (\%)	Reduction in efficiency from eff1 Due to additional stray losses (\%)
11 kW	91.0	89.8	1.2
55 kW	94.2	93.5	0.7

When comparing eff1 motor \& IE2 motor, it is necessary to note the difference in testing methods. The standard has reduced the efficiency value to take care of this. At first glance a customer would feel that an IE2 motor is inferior to an Eff1 motor though both might be identical.

Hence for any comparison, it is necessary to use the same method of loss calculation. The worked out example shown below gives the energy savings per year (for 8000 hours running) of a Bharat Bijlee IE2 motor (normalized for 0.5\% stray loss) over a Bharat Bijlee standard IS 325 motor

Rating kW	BBL IS325 Catalogue (eff\%)	IE2 Catalogue (eff\%)	Input Power (kW)	Additional Stray losses (kW)	Nomalized IE2 Eff with 0.5\% Stray losses assumed	$\begin{gathered} \text { IS } 325 \text { losses } \\ \text { (kW) } \end{gathered}$	IE2 losses (kW)	Saving (kW)	Saving in kW/Year @8000 Hrs running
11	89.0	89.8	12.249	$\begin{gathered} 0.187(0.2424- \\ 0.0550) \end{gathered}$	91.2	1.360	1.062	0.298	2380
55	93.8	93.5	58.824	$\begin{gathered} 0.684(0.959- \\ 0.275) \end{gathered}$	94.6	3.636	3.140	0.496	3968

Energy Saving Calculations:
Table shown below gives the energy savings per year (for 8000 hours running) of a Bharat Bijlee IE2 motor

	2 Pole				4 Pole				6 Pole			
Rating kW	BBL IS325 Catalogue (Eff\%)	$\begin{gathered} \text { IE2 } \\ \text { Catalogue } \\ \text { (Eff\%) } \end{gathered}$	Normalized IE2 Eff with 0.5\% Stray losses	Saving in kW/Year @8000 Hrs running	BBL IS325 Catalogue (Eff\%)	IE2 Catalogue (Eff\%)	Normalized IE2 Eff with 0.5\% Stray losses	Saving in kWh/Year @8000 Hrs running	BBL IS325 Catalogue (Eff\%)	IE2 Catalogue (Eff\%)	Normalized IE2 Eff with 0.5\% Stray losses	Saving in kWh/Year @8000 Hrs running
0.37	71	72.2	73.8	157	71	70.1	71.6	37	68	69	70.0	122
0.55	74	74.8	76.4	188	74	75.1	76.7	212	69	72.9	74.0	429
0.75	77	77.4	79.0	201	77	79.6	81.3	413	73	75.9	77.1	434
1.1	79	79.6	81.2	303	78	81.4	83.1	695	76	78.1	79.8	550
1.5	80.6	81.3	82.9	412	80	82.8	84.5	797	77	79.8	81.4	850
2.2	82.5	83.2	84.8	570	82	84.3	85.9	984	80	81.8	83.4	895
3.7	85	85.5	87.0	805	85	86.3	87.9	1137	85	84.3	85.8	334
5.5	86	87	88.5	1426	86	87.7	89.2	1840	85	86	87.5	1462
7.5	87	88.1	89.5	1944	87	88.7	90.2	2417	88	87.2	88.6	473
9.3	88	88.8	90.2	2056	88	89.3	90.7	2538	88	88	89.4	1307
11	89	89.4	90.8	1927	89	89.8	91.2	2380	88.5	88.7	90.1	1726
15	89.5	90.3	91.6	3101	90.2	90.6	91.9	2520	90	89.7	91.0	1489
18.5	90.5	90.9	92.2	2989	91.2	91.2	92.5	2289	91	90.4	91.7	1206
22	91.5	91.3	92.6	2190	91.8	91.6	92.9	2215	91.2	90.9	92.1	1989
30	92.6	92	93.2	1655	92	92.3	93.5	4228	91.8	91.7	92.9	3080
37	93	92.5	93.7	2243	93	92.7	93.9	2969	92.5	92.2	93.4	2940
45	93.5	92.9	94.0	2143	93.2	93.1	94.2	4256	93.5	92.7	93.8	1320
55	93.3	93.2	94.3	4923	93.8	93.5	94.6	3968	93.5	93.1	94.2	3423
75	94	93.8	94.8	5549	94.2	94	95.0	5618				
90	94	94.1	95.1	8756	94.7	94.2	95.2	4004				

Performance Table For 2- Pole Motors

[^0]Performance Table For 4- Pole Motors

[^1]Performance Table For 6- Pole Motors

[^2]Dimensional Drawing: Industrial Motors Type 2H Foot Mounted (B3) TEFC (IE2) series Frame 63-355L

Dimensional Details: Industrial Motors Type 2H Foot Mounted (B3) TEFC (IE2 series Frame 63-355L

Special Remarks
$15 \mathrm{~kW} / 2 \mathrm{P} \& 11 \mathrm{~kW} / 4 \mathrm{P}$ in 160M will have
dimensions "L","LC" \& "CA" as
Indicated in table "B"

*Refer TABLE A for tolerances
All Dimensions are in mm unless otherwise specified.
(B) Bharat Bijlee
Dimensional Drawing: Industrial Motors Type 2H Flange Mounted (B5) TEFC IE2 series Frame 63-355L

Dimensional Details：Industrial Motors Type 2H Flange Mounted（B5）TEFC（IE2 series Frame 63－355L

	$\stackrel{8}{8}$	$\stackrel{7}{2}$	\sum^{n}	$\stackrel{0}{2}$		\sum^{∞} ）	$\frac{0}{2}$	$\frac{1}{2}$		\sum^{N}	\sum_{Σ}°		$\frac{0}{\sum}$	$\stackrel{\text { ²}}{\Sigma}$		$\stackrel{\text { N }}{ }$	$\stackrel{\text { N }}{ }$	$\stackrel{\text { N }}{ }$		${ }^{2}$	$\underset{\Sigma}{\text { N }}$
	－＝	\cdots	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\infty}$		\％	8	if		？	$\stackrel{\square}{\square}$		안	\bigcirc		앙우운	이군	운 운	이웅	\％	웅웅
	${ }^{*} \mathbb{O}^{*}{ }_{0}$	－	－	$\stackrel{\sim}{\sim}$		へ $\overline{\text { ¢ }}$	\bar{m}	$\overline{\text { s }}$		F	\％		$\stackrel{n}{i n}$	\％		O \％	¢ 8	8 ¢	¢）	8∞	－
		\checkmark	\bigcirc	－	－	$\infty \quad \infty$	∞	∞		\bigcirc	$\stackrel{ }{\sim}$		\pm	$\stackrel{-}{\circ}$		으우안	\bigcirc	\cdots	\cdots	\cdots	～～～
	ш $\mathbb{4}$	\sim	\％	f		if	8	－		\％	앋		$\stackrel{\circ}{ }$	$\stackrel{\circ}{\sim}$			¢ ${ }^{\text {g }}$	악	역윤	악육	악육
		F	\pm	아ํ		d	$\stackrel{\sim}{\sim}$	\sim		¢	～		$\stackrel{\infty}{+}$	乓		\％	8	¢81	¢ 8	¢ ¢	\％¢ ¢
	ci	$\stackrel{y}{4}$	年	\％	\％	$\frac{\square}{m}=$	三	$=$		\equiv	\％		$\stackrel{\text { N }}{\stackrel{\text { N }}{\sim}}$	え		え	え	え	え	N	¢
	\％	q	\％	q		กั	¢	\because		\％	¢		ลิ	N		$\stackrel{N}{N}$	－	－		$\stackrel{\infty}{\sim}$	¢
	σ	$\stackrel{\circ}{\circ}$	N	N		成	Nㅏㄴ	$\stackrel{\text { ¢ }}{\sim}$	$\stackrel{\circ}{\circ}$	$\stackrel{n}{\sim}$	¢్ల	尔	N／èm	¢			N	$\stackrel{\circ}{\text { ® }}$	¢	\％	－
	＞	®		$\stackrel{\circ}{\circ}$		은	$\stackrel{\sim}{\sim}$	－		$\stackrel{\text { ¢ }}{ }$	$\stackrel{\text { ® }}{\sim}$		$\stackrel{\circ}{\sim}$	－		N	¢	¢			$\stackrel{\text { ¢ }}{\text { \％}}$
	\％	1	1	1		Θ		．			$\stackrel{\circ}{\circ}$		लّ	¢		$\stackrel{\text { \％}}{\sim}$	।	1		1	1
	\bigcirc	\％	号	－	d		号	㙰	N	8	可	$\stackrel{\text { ¢ }}{\text { ¢ }}$	¢ ${ }_{\text {¢ }}$	－			产	$\stackrel{\circ}{\div}$	（\％｜c｜c｜	（1）	$\underset{\sim}{\sim}$
	－	$\|\stackrel{\sim}{\sim}\|$	$\bar{\sim}$	$\stackrel{\sim}{\sim}$	N్ల్ర	N－	$\stackrel{\rightharpoonup}{\circ}$	－	\％	\％		\％	$\stackrel{\substack{\text { ¢ }}}{\text { ¢ }}$	$\stackrel{\text { ® }}{\text { ¢ }}$	$\stackrel{\sim}{\infty}$	－	®	웅		N	¢
	8	$\stackrel{\text { N }}{\sim}$	\％	，	N	N	$\stackrel{\text { ® }}{\sim}$	ㅅN		$\stackrel{\circ}{\circ}$			岕	岸		\％	$\stackrel{\circ}{\text { ¢ }}$	䍐		\bigcirc	8
	昂	$\stackrel{\circ}{\circ}$	N	管	\％	\％	ก	$\stackrel{?}{7}$		－			䢔	$\stackrel{N}{\mathrm{~m}}$		¢	$\stackrel{6}{7}$	年		$\frac{5}{6}$	芯
	¢	の	の				F	F		\sim	$\stackrel{M}{7}$		$\stackrel{\sim}{\sim}$	$\stackrel{セ}{\square}$		\bigcirc	$\stackrel{\infty}{\sim}$	$\stackrel{\square}{\square}$		N	$\stackrel{\text {～}}{ }$
	\vdash	м	$\stackrel{\sim}{m}$	¢		$\stackrel{\sim}{\text { ¢ }}$	－	＊		＊	๑	\bigcirc	$ぃ$	\llcorner		\llcorner	\sim	\llcorner		ω	\bigcirc
	ω	앙	O	－		\cdots	$\stackrel{\sim}{\square}$	®		に	$\stackrel{9}{\square}$		๑	$\stackrel{\square}{\square}$		¢	$\stackrel{\square}{\square}$	$\stackrel{\square}{\square}$		～	～
	＊	N	¢	\％		is	8	8		8	\bigcirc		$\stackrel{\square}{7}$	운		역욱운	$\stackrel{\text { ¢ }}{+}$	안	역육	욱욱	욱욱
	＊Σ	$\stackrel{\sim}{\square}$	욱	$\stackrel{\stackrel{\circ}{6}}{\square}$		$\stackrel{\circ}{\circ}$	$\stackrel{\leftrightarrow}{n} \mid$	$2 \frac{\infty}{2}$		O		\％	\％	\％		8	\％	8		8	g
	${ }^{*} z$	๕	욷	－		－	$\stackrel{\square}{\circ}$	$\stackrel{\square}{\square}$		\％		요	웃	－		앙	\％	每		\％	\％
	0	악	\％	운		$\stackrel{\text { ® }}{\sim}$	$\stackrel{\stackrel{\rightharpoonup}{\sim}}{\sim}$	유N		\％		\％	$\stackrel{\circ}{0}$	¢		\％	앙	号		\％	\＆
	$\frac{0}{\circ}$	$\left\|\begin{array}{l} \underset{\infty}{\infty} \\ \underset{\sim}{2} \end{array}\right\|$							$\begin{aligned} & \infty \\ & \infty \\ & \infty \end{aligned}$	\bullet	$\sim \sim \begin{aligned} & \infty \\ & \sim \\ & 0 \\ & 0 \\ & \dot{f}\end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \end{aligned}$		（	$\begin{array}{l\|l\|l\|l\|l\|l\|l\|} \infty & 0 \\ & \infty \\ 0 & 0 \\ 0 \end{array}$				$\cdots \begin{gathered}\text { a } \\ \sim \\ \sim\end{gathered}$	\bigcirc	
	$\underset{\sim}{\underset{\sim}{\sim}} \underset{\sim}{0}$		「	®		\％	\％	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	$\underset{\sim}{\underset{\sim}{m}}$	$\underset{\sim}{\underset{O}{\circ}}$	¢		ㅁㅜㅜ	$\left\|\begin{array}{c} \underset{N}{N} \\ \underset{N}{2} \end{array}\right\|$	$\stackrel{\sim}{\sim}$	$\underset{\sim}{i}$	\sum $\stackrel{\Sigma}{i}$ N N	$\underset{\substack{N \\ \stackrel{N}{N}}}{\substack{n}}$	$\frac{\stackrel{\rightharpoonup}{n}}{ల}$	吹

Dimensional Details: Industrial Motors Type 2H Face Mounted (B14) TEFC 区e2 series Frame 63-132M

*Refer TABLE A for tolerances

Special Design Features Offered

Electrical

Non standard Voltage	42 TO 700V
Non standard Frequency	$50 / 60 \mathrm{~Hz}$ with efficiency class as per IEC 60034-30
Motor for wide variation*	
Voltage variation	$>10 \%$
Frequency Variation	$>5 \%$
Motors with higher ambient temperatures	$>50^{\circ} \mathrm{C}$
Polarities higher than 8 pole	10 pole, 12pole etc
Dual Voltage motors	In ratio 1:v3. 1:2
Multi Speed motors	2 / 3 speeds
Class H Insulation Scheme	
Motors with Thermal protection	PTC Thermisters, Thermostat, RTD, BTD etc.
Space heaters	90 Frame onwards
Motors with starting current Limitations	e.g. <600\% inclusive of tolerance
Motors with intermittent duties	
Motors with flying leads	

* motor performance may vary from the catalogue performance.

Please ask for data sheet for non standard motor.

Product Range

Motor used in Hazardous Area	
\bullet Exame proof motors- ExS/IEC:60079-1)	Frame 80 to 315L (MD)
- Increased Safety -Ex'e' (IS/IEC 60079-7)	Frame 63 to 355L (ME)
\bullet Non sparking-Ex'n' (IS/IEC 60079-15)	Frame 63 to 355L (MN)
Brake Motors	Frame 71 to 132L (MB)
Slip ring Motors	Frame 100 to 160L (MP)
Roller table motors	As per Requirement
Crane Duty Motors	Frame 63 to 355L (MC)
Railway motors (Auxiliary drives)	Frame 180M TO 225M
Cane unloader motors	Frame 160L TO 225M
Marine duty motors	Frame 63 to 355L

Mechanical

Special Mounting	Non Standard mounting dimensions
Cable entries	Metric equivalent
Non Standards shaft materials	e.g. EN 24
Non Standards shaft extension dimension	
Non standards cable entries	
Cable spreader box	180 Frame onwards
Motors with cable glands	Single/Double compression
Motors with separate T.Box for space heater,thermister	200L frame and above
Low vibration motors	Reduced or special class as per IS : 12075 or vibration grade B as per IEC 60037-14
Non standards paint type	
Paint shade	e.g. Shade no. 632 RAL 7030 etc
Forced cooling arrangement (IC416)	(132 frame onwards)
Surface cooled motors (IC410)	
Motors for brake fitment	
Motors with clean flow cowl arrangement	
Motors with C.I Fan up to 225 Frame	
56 Frame motors in B5 AND B14 Mounting construction	

NORTH

DELHI

1st Floor， 7 B Rajindra ParkPusa Road，New Delhi 110060 T：＋91 11 25816931／32／33／35／38 F：＋91 1125816940
Email：bbldelhi＠bharatbijlee．com

LUDHIANA

SCO－146 3rd Floor Above ICCI Bank Feroz Gandhi Market Ludhiana 141001
T：＋91 1612775 692／93
Email：bblludhiana＠bharatbijlee．com

CHANDIGARH

SCO No．333－34 1st Floor Sector 35B Chandigarh． 160022
T：＋91 172 2600532／35 F：＋91 1722600531
Email：bblchandigarh＠bharatbijlee．com

JAIPUR

207 1ST Floor Business Plaza Near Ganapati Plaza B－8 Motilal Avenue Jaipur 302001 T：＋91 1412372842
Email：bbljaipur＠bharatbijlee．com

INDORE

M－78 Trade Centre 18 South Tukoganj Indore 452001 T：＋91 731 2524474／2514486 F：＋91 7312527505 Email：bblindore＠bharatbijlee．com

EAST

KOLKATA
Flat No． 8 Mansarawer 2nd Floor 3B Camac Street Kolkata 700016
T：＋91 332217 2382／83 F：＋91 3322172467
Email：bblcalcutta＠bharatbijlee．com

REGISTERED OFFICE

Electric Mansion 6th Floor Appasaheb Marathe Marg Prabhadevi Mumbai 400025
T：＋91 222430 6237／6375 F：＋91 2224370624

MARKETING OFFICE \＆WORKS

No． 2 MIDC Thane Belapur Road Airoli Navi Mumbai 4000708
T： 91222763 7200／7400 F：＋91 2227637430
Email：motors＠bharatbijlee．com

WEST

MUMBAI

501－502 5th Floor Swastik Chambers Sion Trombay Road Chembur Mumbai 400071
T：＋91 226145 7333／61457334 F：＋91 2225228767
Email：bblho＠bharatbijlee．com

PUNE

Flat No 1 ＂Sai Sankalp＂Ground Floor Sankalp Hsg Soc Ltd Plot no 14 Cts No 380 Opp Jog Hospital Pand Road Kothrud Pune－ 411038 T：＋91 2024321267 ／2432 4831／2432 0232 F：＋91 2024339210
Email：bblpune＠bharatbijlee．com

AHMEDABAD

202 Arth Complex 8－Rashmi Society Behind A K Patel House Mithakali Six Roads Ahmedabad 380009
T：＋91 792642 4187／2642 2455 F：＋91 7926563581
Email：bblahmedabad＠bharatbijlee．com

NAGPUR

Plot No v－71 Neelam Appartment Narendra Nagar Nagpur 440015 Mobile－09665093639
Email：ajay．parashar＠bharatbijlee．com

SOUTH

BANGALORE

204－207 Ramanashree Chambers 2nd Flr 37 Lady Curzon Road Bangalore 560001
T：＋91 8025592646 ／2137／2681 F：＋91 8025592823
Email：motorbangalore＠bharatbijlee．com

CHENNAI

No 12 Rishikesh No 75 （Old No．38）G N Chetty Rd T Nagar Chennai 600017
T：＋91 4428154793 ／ 94 F：＋91 4428154794.
Email：bblchennai＠bharatbijlee．com

SECUNDERABAD

Krishna Mansion 2nd Floor Adjacent to Bible House 134
Rashtrapati Road Secunderabad 500003
T：＋91 4027534512 F：＋91 4027531791
Email：bblsecbad＠bharatbijlee．com

COIMBATORE

112A Chenny＇s Chamber 1st Floor Dr．Nanjappa Road Coimbatore 641018
T：＋91 4223268881
Email：bblcoimbatore＠bharatbijlee．com
Motors｜Transformers｜Drives｜Elevator Systems｜Projects
Powered by Trustw

[^0]: All performance values are subject to tolerance as per IS/IEC 60034-1
 *- These ratings are suitable for ambient temperature $45^{\circ} \mathrm{C}$

[^1]: Note :
 All performance values are subject to tolerance as per IS/IEC 60034-1
 Efficiency measurements are without seals.
 Efficiency measurements are without seals.
 $*$ - These ratings are suitable for ambient temperature $45^{\circ} \mathrm{C}$
 ${ }^{* *}$ - These ratings are suitable for ambient temperature $40^{\circ} \mathrm{C}$

[^2]: All performance values are subject to tolerance as per IS/IEC 60034-1
 Efficiency measurements are without seals.

